COMMISSION DECISION
of 26 April 2011
concerning a technical specification for interoperability relating to the ‘infrastructure’ subsystem of the trans-European conventional rail system
(notified under document C(2011) 2741)
(Text with EEA relevance)
(2011/275/EU)

THE EUROPEAN COMMISSION,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Directive 2008/57/EC of the European Parliament and of the Council of 17 June 2008 on the interoperability of the rail system within the Community (1), and in particular Article 6(1) thereof,

Whereas:

(1) In accordance with Article 2(e) of and Annex II to Directive 2008/57/EC, the rail system is subdivided into structural and functional subsystems, including an infrastructure subsystem.

(2) By Decision C(2006) 124 final of 9 February 2006, the Commission gave a mandate to the European Railway Agency (the Agency) to develop technical specifications for interoperability (TSIs) under Directive 2001/16/EC of the European Parliament and of the Council of 19 March 2001 on the interoperability of the trans-European conventional rail system (2). Under the terms of that mandate, the Agency was requested to draw up the draft TSI related to the infrastructure subsystem of the conventional rail system.

(3) Technical specifications for interoperability (TSI) are specifications adopted in accordance with Directive 2008/57/EC. The TSI in Annex covers the infrastructure subsystem in order to meet the essential requirements and ensure the interoperability of the rail system.

(4) The TSI in Annex does not fully deal with all essential requirements. In accordance with Article 5(6) of Directive 2008/57/EC technical aspects which are not covered are identified as open points in Annex F of this TSI.


(6) In accordance with Article 17(3) of Directive 2008/57/EC, Member States are to notify to the Commission and other Member States the conformity assessment and verification procedures to be used for the specific cases, as well as the bodies responsible for carrying out these procedures.

(7) The TSI in Annex should be without prejudice to the provisions of other relevant TSIs which may be applicable to infrastructure subsystems.

(8) The TSI in Annex should not impose the use of specific technologies or technical solutions except where this is strictly necessary for the interoperability of the rail system within the Union.

(9) In accordance with Article 11(5) of Directive 2008/57/EC, the TSI in Annex should allow, for a limited period of time, for interoperability constituents to be incorporated into subsystems without certification if certain conditions are met.

(10) To continue to encourage innovation and to take into account the experience acquired, the TSI in Annex should be subject to periodic revision.

(11) The measures provided for in this Decision are in conformity with the opinion of the Committee established in accordance with Article 29(1) of Directive 2008/57/EC.

HAS ADOPTED THIS DECISION:

Article 1

A technical specification for interoperability (TSI) relating to the infrastructure subsystem of the trans-European conventional railway, is hereby adopted by the Commission.

The TSI shall be as set out in the Annex to this Decision.

Article 2
This TSI shall be applicable to all new, upgraded or renewed infrastructure of the trans-European conventional rail system as defined in Annex I to Directive 2008/57/EC.

Article 3
1. With regard to those issues classified as open points set out in Annex F of the TSI, the conditions to be complied with for the verification of the interoperability pursuant to Article 17(2) of Directive 2008/57/EC shall be those applicable technical rules in use in the Member State which authorise the placing in service of the subsystems covered by this Decision.

2. Each Member State shall notify to the other Member States and to the Commission within six months of the notification of this Decision:
   (a) the applicable technical rules mentioned in paragraph 1;
   (b) the conformity assessment and checking procedures to be applied with regard to the application of the technical rules mentioned in paragraph 1;
   (c) the bodies it appoints for carrying out the conformity assessment and checking procedures of the open points mentioned in paragraph 1.

Article 4
1. The Member State shall define which lines of the conventional trans-European transport network (TEN-T) as established by Decision No 1692/96/EC of the European Parliament and of the Council (1) are intended to be classified as core TEN lines or other TEN lines on the basis of the categories given in Section 4.2.1 of this TSI. Member States shall notify this information to the Commission within a period of one year from the date of application of this Commission Decision.

2. The Commission, in cooperation with the Agency and the Member States, shall coordinate the classification referred to in paragraph 1, especially with regard to the border crossings and its consistency with the European Deployment Plan on European Rail Traffic Management System as referred to in Commission Decision 2009/561/EC (2).

3. The final classification resulting from the coordination shall be examined by the Committee set up by Council Directive 96/48/EC (3) and, after discussion, made public by the Agency.

4. The Member State shall take into account the classification published by the Agency when defining its national migration plan.


Article 5
The procedures for assessment of conformity, suitability for use and EC verification set out in Chapter 6 of the TSI in Annex shall be based on the modules defined in Decision 2010/713/EU.

Article 6
1. During a transition period of 10 years, it shall be permissible to issue an EC certificate of verification for a subsystem that contains interoperability constituents not holding an EC declaration of conformity or suitability for use, on the condition that the provisions set out in Section 6.6 of the Annex are met.

2. The production or upgrade/renewal of the subsystem with use of the non-certified interoperability constituents must be completed within the transition period, including the placing in service.

3. During the transition period Member States shall ensure that:
   (a) the reasons for non-certification of the interoperability constituents are properly identified in the verification procedure referred to in paragraph 1;
   (b) the details of the non-certified interoperability constituents and the reasons for non-certification, including the application of national rules notified under Article 17 of Directive 2008/57/EC, are included by the National Safety Authorities in their report referred to in Article 18 of Directive 2004/49/EC of the European Parliament and of the Council (4).

4. After the transition period and with the exceptions allowed under Section 6.6.3 on maintenance, interoperability constituents shall be covered by the required EC declaration of conformity and/or suitability for use before being incorporated into the subsystem.

(4) OJ L 164, 30.4.2004, p. 44.
Article 8

1. With regard to those issues classified as specific cases set out in Chapter 7 of the TSI, the conditions to be complied with for the verification of the interoperability pursuant to Article 17(2) of Directive 2008/57/EC shall be those applicable technical rules in use in the Member State which authorise the placing in service of the subsystems covered by this Decision.

2. Each Member State shall notify to the other Member States and to the Commission within six months of the notification of this Decision:

(a) the applicable technical rules mentioned in paragraph 1;

(b) the conformity assessment and checking procedures to be applied with regard to the application of the technical rules mentioned in paragraph 1;

(c) the bodies it appoints for carrying out the conformity assessment and checking procedures of the specific cases mentioned in paragraph 1.

Article 9

This Decision shall apply from 1 June 2011.

Article 10

This Decision is addressed to the Member States.

Done at Brussels, 26 April 2011.

For the Commission
Siim KALLAS
Vice-President
ANNEX

DIRECTIVE 2008/57/EC ON THE INTEROPERABILITY OF THE RAIL SYSTEM WITHIN THE COMMUNITY

TECHNICAL SPECIFICATION FOR INTEROPERABILITY
‘Infrastructure’ subsystem for conventional rail

1. INTRODUCTION ................................................................. 62
1.1. Technical scope ............................................................. 62
1.2. Geographical scope ....................................................... 62
1.3. Content of this TSI .......................................................... 62
2. DEFINITION AND SCOPE OF SUBSYSTEM ................................. 62
2.1. Definition of the infrastructure subsystem ............................... 62
2.2. Interfaces of this TSI with other TSIs ................................... 63
2.3. Interfaces of this TSI with the persons with reduced mobility TSI ............................... 63
2.4. Interfaces of this TSI with the safety in railway tunnels TSI .......... 63
2.5. Inclusion of infrastructure into the scope of the noise TSI .......... 63
3. ESSENTIAL REQUIREMENTS .................................................. 63
4. DESCRIPTION OF THE INFRASTRUCTURE SUBSYSTEM ................ 66
4.1. Introduction ................................................................. 66
4.2. Functional and technical specifications of subsystem ................ 66
4.2.1. TSI categories of line ..................................................... 66
4.2.2. Performance parameters ................................................ 66
4.2.3. Basic parameters characterising the infrastructure subsystem ........ 68
4.2.3.1. List of basic parameters .............................................. 68
4.2.3.2. Requirements for basic parameters .................................. 69
4.2.4. Line layout ............................................................... 70
4.2.4.1. Structure gauge ....................................................... 70
4.2.4.2. Distance between track centres .................................... 70
4.2.4.3. Maximum gradients .................................................. 70
4.2.4.4. Minimum radius of horizontal curve .............................. 70
4.2.4.5. Minimum radius of vertical curve .................................. 71
4.2.5. Track parameters ....................................................... 71
4.2.5.1. Nominal track gauge .................................................. 71
4.2.5.2. Cant ................................................................. 71
4.2.5.3. Rate of change of cant (as a function of time) ................... 71
4.2.5.4. Cant deficiency ........................................ 71
4.2.5.4.1. Cant deficiency on plain track and on the through route of switches and crossings .......... 72
4.2.5.4.2. Abrupt change of cant deficiency on diverging track of switches .............................. 72
4.2.5.5. Equivalent conicity ................................ 72
4.2.5.5.1. Design values for equivalent conicity ................................................................. 72
4.2.5.5.2. Requirements for controlling equivalent conicity in service .................................. 73
4.2.5.6. Railhead profile for plain line ............................... 73
4.2.5.7. Rail inclination ...................................... 74
4.2.5.7.1. Plain line ............................................. 74
4.2.5.7.2. Requirements for switches and crossings ............................................................... 74
4.2.5.8. Track stiffness ....................................... 74
4.2.6. Switches and crossings ...................................... 74
4.2.6.1. Means of locking ..................................... 74
4.2.6.2. In-service geometry of switches and crossings .......................................................... 74
4.2.6.3. Maximum unguided length of fixed obtuse crossings .................................................. 75
4.2.7. Track resistance to applied loads ........................................... 75
4.2.7.1. Track resistance to vertical loads .......................................................... 75
4.2.7.2. Longitudinal track resistance ........................................ 75
4.2.7.3. Lateral track resistance ...................................... 76
4.2.8. Structures resistance to traffic loads ........................................... 76
4.2.8.1. Resistance of new bridges to traffic loads ..................................................... 76
4.2.8.1.1. Vertical loads ........................................... 76
4.2.8.1.2. Centrifugal forces ..................................... 77
4.2.8.1.3. Nosing forces ........................................ 77
4.2.8.1.4. Actions due to traction and braking (longitudinal loads) ..................................... 77
4.2.8.1.5. Design track twist due to rail traffic actions ..................................................... 77
4.2.8.2. Equivalent vertical loading for new earthworks and earth pressure effects .......................... 77
4.2.8.3. Resistance of new structures over or adjacent to tracks ........................................... 77
4.2.8.4. Resistance of existing bridges and earthworks to traffic loads .................................... 77
4.2.9. Track geometrical quality and limits on isolated defects .................................................. 78
4.2.9.1. Determination of immediate action, intervention, and alert limits ................................ 78
4.5. Maintenance plan

4.5.1. Before placing a line in service

4.5.2. After placing a line in service

4.6. Professional competences

4.7. Health and safety conditions

4.8. Register of infrastructure

5. INTEROPERABILITY CONSTITUENTS

5.1. Basis on which interoperability constituents have been selected

5.2. List of constituents

5.3. Constituents performances and specifications

5.3.1. The rail

5.3.1.1. Railhead profile

5.3.1.2. Moment of inertia of the rail cross section

5.3.1.3. Rail hardness

5.3.2. The rail fastening systems

5.3.3. Track sleepers

6. ASSESSMENT OF CONFORMITY OF INTEROPERABILITY CONSTITUENTS AND EC VERIFICATION OF THE SUBSYSTEMS

6.1. Interoperability constituents

6.1.1. Conformity assessment procedures

6.1.2. Application of modules

6.1.3. Innovative solutions for interoperability constituents

6.1.4. EC declaration of conformity for interoperability constituents

6.2. Infrastructure subsystem

6.2.1. General provisions

6.2.2. Application of modules

6.2.3. Innovative solutions

6.2.4. Particular assessment procedures for subsystem

6.2.5. Technical solutions giving presumption of conformity at design phase

6.3. EC verification when speed is used as a migration criterion

6.4. Assessment of maintenance plan

6.5. Assessment of Register of Infrastructure
6.6. Subsystems containing interoperability constituents not holding an EC declaration

6.6.1. Conditions

6.6.2. Documentation

6.6.3. Maintenance of the subsystems certified according to 6.6.1

7. IMPLEMENTING THE INFRASTRUCTURE TSI

7.1. Application of this TSI to conventional rail lines

7.2. Application of this TSI to new conventional rail lines

7.3. Application of this TSI to existing conventional rail lines

7.3.1. Upgrading of a line

7.3.2. Renewal of a line

7.3.3. Substitution in the framework of maintenance

7.3.4. Existing lines that are not subject to a renewal or upgrading project

7.4. Speed as migration criterion

7.5. Compatibility of infrastructure and rolling stock

7.6. Specific cases

7.6.1. Particular features on the Estonian network

7.6.2. Particular features on the Finnish network

7.6.3. Particular features on the Hellenic network

7.6.4. Particular features on the Irish network

7.6.5. Particular features on the Latvian network

7.6.6. Particular features on the Lithuanian network

7.6.7. Particular features on the Polish network

7.6.8. Particular features on the Portuguese network

7.6.9. Particular features on the Romanian network

7.6.10. Particular features on the Spanish network

7.6.11. Particular features on the Swedish network

7.6.12. Particular features on the UK network for Great Britain

7.6.13. Particular features on the UK network for Northern Ireland
<table>
<thead>
<tr>
<th>Annex</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Assessment of interoperability constituents</td>
<td>104</td>
</tr>
<tr>
<td>B</td>
<td>Assessment of the infrastructure subsystem</td>
<td>105</td>
</tr>
<tr>
<td>C</td>
<td>Capability requirements for structures according to TSI category of line in Great Britain</td>
<td>108</td>
</tr>
<tr>
<td>D</td>
<td>Items to be included in the Register of Infrastructure</td>
<td>110</td>
</tr>
<tr>
<td>E</td>
<td>Capability requirements for structures according to TSI category of line</td>
<td>111</td>
</tr>
<tr>
<td>F</td>
<td>List of open points</td>
<td>112</td>
</tr>
<tr>
<td>G</td>
<td>Glossary</td>
<td>113</td>
</tr>
<tr>
<td>H</td>
<td>List of referenced standards</td>
<td>119</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1. Technical scope
This TSI concerns the infrastructure subsystem and part of the maintenance subsystem of the trans-European conventional rail system. They are included in the list of subsystems in Annex II (1) to Directive 2008/57/EC.

1.2. Geographical scope
The geographical scope of this TSI is the trans-European conventional rail system as described in Annex I (1.1) to Directive 2008/57/EC.

1.3. Content of this TSI
In accordance with Article 5(3) of Directive 2008/57/EC, this TSI:
(a) indicates its intended scope (Chapter 2);
(b) lays down essential requirements for the infrastructure subsystem (Chapter 3);
(c) establishes the functional and technical specifications to be met by the subsystem and its interfaces vis-à-vis other subsystems (Chapter 4);
(d) determines the interoperability constituents and interfaces which must be covered by European specifications, including European standards, which are necessary to achieve interoperability within the trans-European conventional rail system (Chapter 5);
(e) states, in each case under consideration, which procedures are to be used in order to assess the conformity or the suitability for use of the interoperability constituents, on the one hand, or the EC verification of the subsystem, on the other hand (Chapter 6);
(f) indicates the strategy for implementing this TSI (Chapter 7);
(g) indicates, for the staff concerned, the professional competences and health and safety conditions at work required for the operation and maintenance of the subsystem, as well as for the implementation of this TSI (Chapter 4).

In accordance with Article 5(5) of the Directive 2008/57/EC, provisions for specific cases are indicated in Chapter 7.

This TSI also sets out, in Chapter 4, the operating and maintenance rules specific to the scope indicated in paragraphs 1.1 and 1.2 above.

2. DEFINITION AND SCOPE OF SUBSYSTEM

2.1. Definition of the infrastructure subsystem
This TSI covers:
(a) the infrastructure structural subsystem;
(b) the part of the maintenance functional subsystem relating to the infrastructure subsystem (that is: washing plants for external cleaning of trains, water restocking, refuelling, fixed installations for toilet discharge and electrical shore supplies).

The elements of the infrastructure subsystem are described in Annex II (2.1. Infrastructure) to Directive 2008/57/EC.

The scope of this TSI therefore includes the following aspects of the infrastructure subsystem:
(a) Line layout,
(b) Track parameters,
(c) Switches and crossings,
(d) Track resistance to applied loads,
(e) Structures resistance to traffic loads,
(f) Track geometrical quality and limits on isolated defects,

(g) Platforms,

(h) Health, safety and environment,

(i) Provision for operation,

(j) Fixed installations for servicing trains.

Further details are set out in Section 4.2.3 of this TSI.

2.2. Interfaces of this TSI with other TSIs

Section 4.3 of this TSI sets out the functional and technical specification of the interfaces with the following subsystems, as defined in the relevant TSIs:

(a) Rolling stock subsystem,

(b) Energy subsystem,

(c) Control command and signalling subsystem,

(d) Traffic operation and management subsystem.

Interfaces with the persons with reduced mobility TSI (PRM TSI) are described in Section 2.3 below.

Interfaces with the safety in railway tunnels TSI (SRT TSI) are described in Section 2.4 below.

2.3. Interfaces of this TSI with the persons with reduced mobility TSI

All requirements relating to the infrastructure subsystem for the access of persons with reduced mobility to the railway system are set out in the persons with reduced mobility TSI.

This TSI does not therefore include requirements relating to this aspect of the infrastructure subsystem.

2.4. Interfaces of this TSI with the safety in railway tunnels TSI

All requirements relating to the infrastructure subsystem for safety in railway tunnels are set out in the safety in railway tunnels TSI.

This TSI does not therefore include requirements relating to this aspect of the infrastructure subsystem.

2.5. Inclusion of infrastructure into the scope of the noise TSI

The scope of this TSI excludes noise mitigation, pending the proposal referred to in the technical specification for interoperability relating to the subsystem ‘rolling stock — noise’, which specifies the following:

‘Technical specification for interoperability relating to the subsystem “rolling stock — noise”

This Decision shall become applicable six months after the date of its notification.

7.2. TSI Revision

… the EC will deliver to “the Article 21 Committee”, at the latest seven years after the date of entry into force of this TSI, a report and, if needed, a proposal for revising this TSI about following issues:

5. the inclusion of infrastructure into the scope of the Noise TSI in coordination with the TSI Infrastructure;

3. ESSENTIAL REQUIREMENTS

The following table indicates references to the essential requirements set out in Annex III to Directive 2008/57/EC that are delivered by the requirements for basic parameters set out in Chapter 4.
### Table 1

**Basic parameters of the infrastructure subsystem corresponding to the essential requirements**

<table>
<thead>
<tr>
<th>Section</th>
<th>Basic parameters of CR INF subsystem</th>
<th>Safety</th>
<th>Reliability</th>
<th>Availability</th>
<th>Health</th>
<th>Environmental protection</th>
<th>Technical compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.4.1</td>
<td>Structure gauge</td>
<td>1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5-§1</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>Distance between track centres</td>
<td>1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>4.2.4.3</td>
<td>Maximum gradients</td>
<td>1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5-§1</td>
</tr>
<tr>
<td>4.2.4.4</td>
<td>Minimum radius of horizontal curve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.4.5</td>
<td>Minimum radius of vertical curve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5-§1</td>
</tr>
<tr>
<td>4.2.5.1</td>
<td>Nominal track gauge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5-§1</td>
</tr>
<tr>
<td>4.2.5.2</td>
<td>Cant</td>
<td>1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.5.3</td>
<td>Rate of change of cant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.5.4</td>
<td>Cant deficiency</td>
<td>1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5-§1</td>
</tr>
<tr>
<td>4.2.5.5</td>
<td>Equivalent conicity</td>
<td>1.1.1,</td>
<td>1.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.5.6</td>
<td>Railhead profile for plain line</td>
<td>1.1.1,</td>
<td>1.1.2</td>
<td></td>
<td></td>
<td></td>
<td>1.5-§1</td>
</tr>
<tr>
<td>4.2.5.7</td>
<td>Rail inclination</td>
<td>1.1.1,</td>
<td>1.1.2</td>
<td></td>
<td></td>
<td></td>
<td>1.5-§1</td>
</tr>
<tr>
<td>4.2.5.8</td>
<td>Track stiffness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>4.2.6.1</td>
<td>Means of locking</td>
<td>1.1.1,</td>
<td>1.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.6.2</td>
<td>In-service geometry of switches and</td>
<td>1.1.1,</td>
<td>1.1.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>4.2.6.3</td>
<td>Maximum unguided length of fixed</td>
<td>1.1.1,</td>
<td>1.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.7.1</td>
<td>Track resistance to vertical loads</td>
<td>1.1.1,</td>
<td>1.1.2,</td>
<td>1.1.3</td>
<td></td>
<td></td>
<td>1.5-§1</td>
</tr>
<tr>
<td>4.2.7.2</td>
<td>Longitudinal track resistance</td>
<td>1.1.1,</td>
<td>1.1.2,</td>
<td>1.1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.7.3</td>
<td>Lateral track resistance</td>
<td>1.1.1,</td>
<td>1.1.2,</td>
<td>1.1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.8.1</td>
<td>Resistance of new bridges to traffic</td>
<td>1.1.1,</td>
<td>1.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.8.2</td>
<td>Equivalent vertical loading for new</td>
<td>1.1.1,</td>
<td>1.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.8.3</td>
<td>Resistance of new structures over or</td>
<td>1.1.1,</td>
<td>1.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.8.4</td>
<td>Resistance of existing bridges and</td>
<td>1.1.1,</td>
<td>1.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.9.1</td>
<td>Determination of immediate action,</td>
<td>1.1.1,</td>
<td>1.1.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Basic parameters of CR INF subsystem</td>
<td>Safety</td>
<td>Reliability</td>
<td>Health</td>
<td>Environmental protection</td>
<td>Technical compatibility</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>4.2.9.2</td>
<td>Immediate action limit for track twist</td>
<td>1.1.1, 1.1.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td>1.5-§1</td>
<td></td>
</tr>
<tr>
<td>4.2.9.3</td>
<td>Immediate action limit for variation of track gauge</td>
<td>1.1.1, 1.1.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td>1.5-§1</td>
<td></td>
</tr>
<tr>
<td>4.2.9.4</td>
<td>Immediate action limit for cant</td>
<td>1.1.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td>1.5-§1</td>
<td></td>
</tr>
<tr>
<td>4.2.10.1</td>
<td>Usable length of platforms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>4.2.10.2</td>
<td>Width and edge of platforms</td>
<td>1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.10.3</td>
<td>End of platforms</td>
<td>1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.10.4</td>
<td>Height of platforms</td>
<td>1.1.1, 2.1.1-§3</td>
<td>1.2</td>
<td></td>
<td></td>
<td>1.5-§1</td>
<td></td>
</tr>
<tr>
<td>4.2.10.5</td>
<td>Offset of platforms</td>
<td>1.1.1, 2.1.1-§3</td>
<td>1.2</td>
<td></td>
<td></td>
<td>1.5-§1</td>
<td></td>
</tr>
<tr>
<td>4.2.11.1</td>
<td>Maximum pressure variation in tunnels</td>
<td>2.1.1-§2, 2.1.1-§4</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.11.2</td>
<td>Noise and vibration limits and mitigation measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4.1, 1.4.4, 1.4.5</td>
<td></td>
</tr>
<tr>
<td>4.2.11.3</td>
<td>Protection against electric shock</td>
<td>2.1.1-§3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.11.4</td>
<td>Safety in railway tunnels</td>
<td>1.1.1, 1.1.4, 2.1.1-§1, 2.1.1-§4</td>
<td>1.3</td>
<td>1.4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.11.5</td>
<td>Effect of crosswinds</td>
<td>1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.12.1</td>
<td>Distance markers</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.13.2</td>
<td>Toilet discharge</td>
<td>1.2</td>
<td>1.3.1</td>
<td></td>
<td></td>
<td>1.5-§1</td>
<td></td>
</tr>
<tr>
<td>4.2.13.3</td>
<td>Train external cleaning facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5-§1</td>
<td></td>
</tr>
<tr>
<td>4.2.13.4</td>
<td>Water restocking</td>
<td>1.2</td>
<td>1.3.1</td>
<td></td>
<td></td>
<td>1.5-§1</td>
<td></td>
</tr>
<tr>
<td>4.2.13.5</td>
<td>Refuelling</td>
<td>1.2</td>
<td>1.3.1</td>
<td></td>
<td></td>
<td>1.5-§1</td>
<td></td>
</tr>
<tr>
<td>4.2.13.6</td>
<td>Electric shore supply</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td>1.5-§1</td>
<td></td>
</tr>
<tr>
<td>4.4.1</td>
<td>Exceptional conditions relating to pre-planned works</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>4.4.2</td>
<td>Degraded operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>4.4.3</td>
<td>Protection of workers against aerodynamic effects</td>
<td>2.1.1-§2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Maintenance plan</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Professional competences</td>
<td>1.1.5</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Health and safety conditions</td>
<td>2.1.1-§2, 2.1.1-§3, 2.1.1-§4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4.2</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>
4. DESCRIPTION OF THE INFRASTRUCTURE SUBSYSTEM

4.1. Introduction

(1) The trans-European conventional railway system, to which Directive 2008/57/EC applies and of which the infrastructure and maintenance subsystems are parts, is an integrated system whose coherence must be verified, with the objective of assuring the interoperability of the system in respect of the essential requirements.

(2) Article 5(7) of the Directive says ‘the TSIs shall not be an impediment to decisions by the Member States concerning the use of infrastructures for the movement of vehicles not covered by the TSIs’.

Therefore, when designing a new or upgraded conventional line, consideration should be given to all trains which may be authorised on the line.

(3) The limiting values set out in the present TSI are not intended to be imposed as usual design values. However the design values must be within the limits set out in this TSI.

(4) The functional and technical specifications of the subsystem and its interfaces, described in Sections 4.2 and 4.3, do not impose the use of specific technologies or technical solutions, except where this is strictly necessary for the interoperability of the trans-European conventional rail network. But innovative solutions for interoperability could require new specifications and/or new assessment methods. In order to allow technological innovation, these specifications and assessment methods shall be developed by the process described in Section 6.2.3.

4.2. Functional and technical specifications of subsystem

4.2.1. TSI categories of line

(1) Annex I (1.1) to the Directive recognises that the conventional rail network may be subdivided into different categories. In order to deliver interoperability cost-effectively this TSI defines ‘TSI categories of line’. The functional and technical specifications of this TSI vary according to the TSI categories of line.

(2) The requirements to be met by the infrastructure subsystem are specified for each of the following TSI categories of line of the trans-European conventional rail system, as relevant. These TSI categories of line may be used for the classification of existing lines insofar the relevant performance parameters will be met in consistency with the national migration plan.

<table>
<thead>
<tr>
<th>TSI categories of line</th>
<th>Types of traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passenger traffic (P)</td>
</tr>
<tr>
<td>New core TEN line (IV)</td>
<td>IV-P</td>
</tr>
<tr>
<td>Upgraded core TEN line (V)</td>
<td>V-P</td>
</tr>
<tr>
<td>New other TEN line (VI)</td>
<td>VI-P</td>
</tr>
<tr>
<td>Upgraded other TEN line (VII)</td>
<td>VII-P</td>
</tr>
</tbody>
</table>

(3) Note that passenger hubs, freight hubs and connecting lines are included in the above TSI categories of line, as appropriate.

(4) The TSI category of line for every section of track shall be published in the Register of Infrastructure.

4.2.2. Performance parameters

(1) The performance levels of the TSI categories of line defined in Section 4.2.1 are characterised by following performance parameters:

(a) gauge,

(b) axle load,

(c) line speed,

(d) train length.
(2) The performance levels for each TSI category of line are set out in Table 3 hereunder.

### Table 3

**Performance parameters for TSI categories of line**

<table>
<thead>
<tr>
<th>TSI categories of line</th>
<th>Gauge</th>
<th>Axle load (t)</th>
<th>Line speed (km/h)</th>
<th>Train length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-P</td>
<td>GC</td>
<td>22.5</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>IV-F</td>
<td>GC</td>
<td>25</td>
<td>140</td>
<td>750</td>
</tr>
<tr>
<td>IV-M</td>
<td>GC</td>
<td>25</td>
<td>200</td>
<td>750</td>
</tr>
<tr>
<td>V-P</td>
<td>GB</td>
<td>22.5</td>
<td>160</td>
<td>300</td>
</tr>
<tr>
<td>V-F</td>
<td>GB</td>
<td>22.5</td>
<td>100</td>
<td>600</td>
</tr>
<tr>
<td>V-M</td>
<td>GB</td>
<td>22.5</td>
<td>160</td>
<td>600</td>
</tr>
<tr>
<td>VI-P</td>
<td>GB</td>
<td>22.5</td>
<td>140</td>
<td>300</td>
</tr>
<tr>
<td>VI-F</td>
<td>GC</td>
<td>25</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>VI-M</td>
<td>GC</td>
<td>25</td>
<td>140</td>
<td>500</td>
</tr>
<tr>
<td>VII-P</td>
<td>GA</td>
<td>20</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>VII-F</td>
<td>GA</td>
<td>20</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>VII-M</td>
<td>GA</td>
<td>20</td>
<td>120</td>
<td>500</td>
</tr>
</tbody>
</table>

**Notes:**
- (P) = passenger traffic, (F) = freight traffic, (M) = mixed traffic, gauge GA, GB, GC are as defined in EN 15273-3:2009 Annex C.

(3) Article 5(7) of Directive 2008/57/EC states:

>The TSIs shall not be an impediment to decisions by the Member States concerning the use of infrastructures for the movement of vehicles not covered by the TSIs.

It is therefore permissible to design new and upgraded lines such that they will also accommodate larger gauges, higher axle loads, greater speeds and longer trains than those specified.

(4) It is permissible for specific locations on the line to be designed for line speed and/or train lengths less than those set out in Table 3, where duly justified to meet geographical, urban or environmental constraints.

(5) Infrastructure designed to the minimum requirements of this TSI does not provide the capability to meet both maximum speed and maximum axle load in combination. The infrastructure is only capable of being exploited at maximum speed for axle loads less than the maximum set out in Table 3, and similarly the infrastructure is only capable of being exploited at maximum axle load for speeds less than the maximum set out in Table 3.

(6) The actual performance parameters for each section of track shall be published in the Register of Infrastructure.

(7) The published information relating to axle load shall use EN line categories and/or locomotive classes defined in EN 15528:2008 Annexes A, J and K in combination with the permitted speed. If the load carrying capability of a section of track exceeds the range of EN line categories and or locomotive classes specified, then additional information defining the load carrying capability may be provided.

(8) The published information relating to gauge shall state which of the gauges GA, GB or GC is provided. Additionally, the published information shall include other gauges defined in EN 15273:2009 Annex D that are provided for multi-national agreements. The published information may include national gauges that are provided for domestic use.
4.2.3. Basic parameters characterising the infrastructure subsystem

4.2.3.1. List of basic parameters

(1) The basic parameters characterising the infrastructure subsystem, grouped according to the aspects listed in Section 2.1, are:

A. Line layout:
   (a) Structure gauge (4.2.4.1),
   (b) Distance between track centres (4.2.4.2),
   (c) Maximum gradients (4.2.4.3),
   (d) Minimum radius of horizontal curve (4.2.4.4),
   (e) Minimum radius of vertical curve (4.2.4.5),

B. Track parameters:
   (f) Nominal track gauge (4.2.5.1),
   (g) Cant (4.2.5.2),
   (h) Rate of change of cant (as a function of time) (4.2.5.3),
   (i) Cant deficiency (4.2.5.4),
   (j) Equivalent conicity (4.2.5.5),
   (k) Railhead profile for plain line (4.2.5.6),
   (l) Rail inclination (4.2.5.7),
   (m) Track stiffness (4.2.5.8),

C. Switches and crossings
   (n) Means of locking (4.2.6.1),
   (o) In-service geometry of switches and crossings (4.2.6.2),
   (p) Maximum unguided length of fixed obtuse crossings (4.2.6.3),

D. Track resistance to applied loads
   (q) Track resistance to vertical loads (4.2.7.1),
   (r) Longitudinal track resistance (4.2.7.2),
   (s) Lateral track resistance (4.2.7.3),

E. Structures resistance to traffic loads
   (t) Resistance of new bridges to traffic loads (4.2.8.1),
   (u) Equivalent vertical loading for new earthworks and earth pressure effects (4.2.8.2),
   (v) Resistance of new structures over or adjacent to tracks (4.2.8.3),
   (w) Resistance of existing bridges and earthworks to traffic loads (4.2.8.4),

F. Track geometrical quality and limits on isolated defects
   (x) Determination of immediate action, intervention, and alert limits (4.2.9.1),
   (y) The immediate action limit for track twist (4.2.9.2),
   (z) The immediate action limit for variation of track gauge (4.2.9.3),
   (aa) The immediate action limit for cant (4.2.9.4),
G. Platforms
   (bb) Usable length of platforms (4.2.10.1),
   (cc) Width and edge of platforms (4.2.10.2),
   (dd) End of platforms (4.2.10.3),
   (ee) Height of platforms (4.2.10.4),
   (ff) Offset of platforms (4.2.10.5),

H. Health, safety and environment
   (gg) Maximum pressure variation in tunnels (4.2.11.1),
   (hh) Noise and vibration limits and mitigation measures (4.2.11.2),
   (ii) Protection against electric shock (4.2.11.3),
   (jj) Safety in railway tunnels (4.2.11.4),
   (kk) Effect of crosswinds (4.2.11.5),

I. Provision for operation
   (ll) Distance markers (4.2.12.1),

J. Fixed installations for servicing trains
   (mm) Toilet discharge (4.2.13.2),
   (nn) Train external cleaning facilities (4.2.13.3),
   (oo) Water restocking (4.2.13.4),
   (pp) Refuelling (4.2.13.5),
   (qq) Electric shore supply (4.2.13.6).

4.2.3.2. Requirements for basic parameters

   (1) These requirements are described in the following paragraphs, together with any particular conditions that
       may be allowed in each case for the parameters and interfaces concerned.

   (2) All requirements of Chapter 4 of the present TSI are given for lines built with the standard European track
       gauge, as defined in paragraph 4.2.5.1 for lines complying with the present TSI.

   (3) The specifications for cant, rate of change of cant, cant deficiency, rate of change of cant deficiency and
       track twist are applicable to lines having a nominal track gauge of 1 435 mm. For a line having another
       nominal track gauge, the limits on these parameters shall be established in proportion to the nominal
       distance between the rails.

   (4) In case of multi-rail track, requirements of this TSI are to be applied separately to each pair of rails
       designed to be operated as separate track.

   (5) Requirements for lines representing specific cases, including lines built to another track gauge, are described
       under Section 7.6.

   (6) A short section of track with devices to allow transition between different nominal track gauges is
       permitted. The location and type of transitions shall be published in the Register of Infrastructure.

   (7) Requirements are described for the subsystem under normal service conditions. Consequences, if any, of the
       execution of works, which may require temporary exceptions as far as the subsystem performance is
       concerned, are dealt with in Section 4.4.

   (8) The performance levels of conventional trains can be enhanced by adopting specific systems, such as
       vehicle body tilting. Special conditions are permitted for running such trains, provided they do not
       entail restrictions for other trains not equipped with such systems. The Register of Infrastructure shall
       record if such special conditions apply. The special conditions shall be publically available.
4.2.4. **Line layout**

4.2.4.1. **Structure gauge**

   *All TSI categories of line*

   (1) The structure gauge shall be set on the basis of the gauge set out in Table 3 of this TSI.

   (2) Calculations of the structure gauge shall be done using the kinematic method in accordance with the requirements of Chapters 5, 7, 10 and the Annex C of EN 15273-3:2009.

   (3) Where overhead electrification is provided, the pantograph gauges are set out in the CR ENE TSI.

4.2.4.2. **Distance between track centres**

   *All TSI categories of line*

   (1) The distance between track centres shall be set on the basis of the gauge set out in Table 3 of this TSI.

   (2) Where appropriate the minimum distance between track centres shall also take into account aerodynamic effects. The rules for taking account of aerodynamic effects, and the distance between track centres at which aerodynamic effects need to be taken into account, are an open point.

   (3) The minimum distance between track centres of a section of line shall be published in the Register of Infrastructure.

4.2.4.3. **Maximum gradients**

   *TSI categories of line IV-P and VI-P*

   (1) Gradients as steep as 35 mm/m are permitted for main tracks at the design phase provided the following ‘envelope’ requirements are observed:

   (a) the slope of the moving average profile over 10 km is less than or equal to 25 mm/m,

   (b) the maximum length of continuous 35 mm/m gradient does not exceed 6 km.

   (2) Gradients of tracks through passenger platforms shall not be more than 2,5 mm/m, where passenger carriages are intended to be regularly attached or detached.

   *TSI categories of line IV-F, IV-M, VI-F and VI-M*

   (3) Maximum gradients as steep as 12,5 mm/m are permitted for main tracks at the design phase.

   (4) For sections up to 3 km the maximum gradient of 20 mm/m is permitted.

   (5) For sections up to 0,5 km the maximum gradient of 35 mm/m is permitted in locations, where trains are not intended to stop and start in normal operation.

   (6) Gradients of tracks through passenger platforms shall not be more than 2,5 mm/m, where passenger carriages are intended to be regularly attached or detached.

   *TSI categories of line V-P, V-F, V-M, VII-P, VII-F and VII-M*

   (7) No values are specified for upgraded lines, as gradients are determined by the original construction of the line concerned.

   *All TSI categories of line*

   (8) Gradients of stabling tracks intended for parking rolling stock shall not be more than 2,5 mm/m unless specific provision is made to prevent the rolling stock from running away.

   (9) Gradients and locations of changes in gradient shall be published in the Register of Infrastructure.

   (10) In the case of stabling tracks, gradients need to be published in the Register of Infrastructure only when they exceed 2,5 mm/m.

4.2.4.4. **Minimum radius of horizontal curve**

   *All TSI categories of line*

   (1) The minimum design radius of horizontal curve shall be selected with regard to the local design speed of the curve.
(2) For stabling tracks or sidings the minimum horizontal design curve radius shall not be less than 150 m.

(3) The minimum radius of horizontal curve through platforms is set out in the PRM TSI.

(4) Reverse curves (other than reverse curves in marshalling yards where wagons are shunted individually) with radii in the range from 150 m up to 300 m shall be designed in accordance to EN 13803-2:2006 Section 8.4 to prevent buffer locking.

(5) The radius of the smallest horizontal curve of a section of line shall be published in the Register of Infrastructure.

4.2.4.5. Minimum radius of vertical curve

All TSI categories of line

(1) The radius of vertical curves (except for humps in marshalling yards) shall be at least 600 m on a crest or 900 m in a hollow.

(2) For humps in marshalling yards the radius of vertical curves shall be at least 250 m on a crest or 300 m in a hollow.

4.2.5. Track parameters

4.2.5.1. Nominal track gauge

All TSI categories of line

(1) European standard nominal track gauge shall be 1 435 mm.

(2) The nominal track gauge for a line shall be published in the Register of Infrastructure.

4.2.5.2. Cant

All TSI categories of line

(1) The design cant on tracks adjacent to station platforms shall not exceed 110 mm.

(2) The highest cant on a section of line shall be published in the Register of Infrastructure.

TSI categories of line IV-P, V-P, VI-P and VII-P

(3) The design cant shall be limited to 180 mm.

TSI categories of line IV-F, IV-M, V-F, V-M, VI-F, VI-M, VII-F and VII-M

(4) The design cant shall be limited to 160 mm.

TSI categories of line IV-F, IV-M, VI-F and VI-M

(5) On curves with a radius less than 290 m, the cant shall be restricted to the limit given by the following formula

\[ D \leq \frac{(R-50)}{1.5} \]

where D is the cant in mm and R is the radius in m.

4.2.5.3. Rate of change of cant (as a function of time)

All TSI categories of line

(1) The maximum rate of change of cant through a transition shall be 70 mm/s calculated at the maximum speed permitted for trains not fitted with a cant deficiency compensation system.

(2) However, if the cant deficiency at the end of the transition is less than or equal to 150 mm and the rate of change of cant deficiency through the transition is less than or equal to 70 mm/s, it is permissible to increase the maximum rate of change of cant to 85 mm/s.

4.2.5.4. Cant deficiency

All TSI categories of line

(1) The following specifications are applicable to interoperable lines having nominal track gauge as defined in paragraph 4.2.5.1 of the present TSI.
4.2.5.4.1. Cant deficiency on plain track and on the through route of switches and crossings

(1) The maximum cant deficiency at which trains are permitted to run shall take account of the acceptance criteria of the vehicles concerned, set out in HS and CR rolling stock TSIs.

(2) For trains which are not fitted with cant deficiency compensation systems, the cant deficiency on lines with speeds up to and including 200 km/h shall not exceed without any further demonstration the following:

(a) 130 mm (or 0.85 m/s² uncompensated lateral acceleration) for rolling stock approved to the Freight Wagons TSI (WAG TSI);

(b) 150 mm (or 1.0 m/s² uncompensated lateral acceleration) for rolling stock approved to Locomotives and Passenger RST TSI (LOC&PAS TSI).

(3) It is permissible for trains specifically designed to travel with higher cant deficiency (multiple units with lower axle loads; trains equipped with a cant deficiency compensation system) to run with higher cant deficiency values, subject to a demonstration that this can be achieved safely.

4.2.5.4.2. Abrupt change of cant deficiency on diverging track of switches

(1) The maximum design values of abrupt change of cant deficiency on diverging tracks shall be:

(a) 120 mm for switches allowing turnout speeds of \(30 \leq V \leq 70\) km/h,

(b) 105 mm for switches allowing turnout speeds of \(70 < V \leq 170\) km/h,

(c) 85 mm for switches allowing turnout speeds of \(170 < V \leq 200\) km/h.

(2) An allowance of 20 mm on these values may be accepted for existing ranges of designs of switches.

4.2.5.5. Equivalent conicity

All TSI categories of line

(1) The limiting values for equivalent conicity quoted in Table 4 shall be calculated for the amplitude \((y)\) of the wheelset’s lateral displacement:

\[
\begin{align*}
\text{— } y &= 3 \text{ mm} \quad \text{if } (TG - SR) \geq 7 \text{ mm} \\
\text{— } y &= \left(\frac{(TG - SR) - 1}{2}\right) \quad \text{if } 5 \leq (TG - SR) < 7 \text{ mm} \\
\text{— } y &= 2 \text{ mm} \quad \text{if } (TG - SR) < 5 \text{ mm}
\end{align*}
\]

where TG is the track gauge and SR is the distance between the flange contact faces of the wheelset. No assessment of equivalent conicity is required for switches and crossings.

4.2.5.5.1. Design values for equivalent conicity

(1) Design values of track gauge, railhead profile and rail inclination for plain line shall be selected to ensure that the equivalent conicity limits set out in Table 4 are not exceeded.

<table>
<thead>
<tr>
<th>Speed range (km/h)</th>
<th>Equivalent conicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S\ 1002, \ GV\ \text{1/40})</td>
<td>(S\ 1002, \ GV\ \text{1/40})</td>
</tr>
<tr>
<td>(\leq 60)</td>
<td>Assessment not required</td>
</tr>
<tr>
<td>(60 &lt; v \leq 160)</td>
<td>0.25</td>
</tr>
<tr>
<td>(160 &lt; v \leq 200)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

(2) The following wheelsets shall be modelled passing over the designed track conditions (simulated by calculation according to EN 15302:2008):

(a) \(S\ 1002\) as defined in EN 13715:2006 Annex C with SR = 1 420 mm

(b) \(S\ 1002\) as defined in EN 13715:2006 Annex C with SR = 1 426 mm
(c) GV 1/40 as defined in EN 13715:2006 Annex B with SR = 1 420 mm
(d) GV 1/40 as defined in EN 13715:2006 Annex B with SR = 1 426 mm
(e) EPS as defined in EN 13715:2006 Annex D with SR = 1 420 mm.

4.2.5.5.2. Requirements for controlling equivalent conicity in service

(1) Requirements for controlling equivalent conicity in service are an open point.

(2) Once the initial design of the track system has been established, an important parameter for the control of equivalent conicity in service is track gauge. Therefore pending closure of the open point, the values for mean track gauge and the requirements for actions to be taken in case of ride instability set out below shall be respected.

(3) The infrastructure manager shall maintain the mean track gauge on straight track and in curves of radius \( R > 10\,000\) m at or above the limit set out in Table 5 below:

<table>
<thead>
<tr>
<th>Speed range ((\text{km/h}))</th>
<th>Mean gauge ((\text{mm})) over 100 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>( v \leq 60 )</td>
<td>assessment not required</td>
</tr>
<tr>
<td>( 60 &lt; v \leq 160 )</td>
<td>1 430</td>
</tr>
<tr>
<td>( 160 &lt; v \leq 200 )</td>
<td>1 430</td>
</tr>
</tbody>
</table>

(4) If ride instability is reported on a track respecting the requirement of Section 4.2.5.5 for rolling stock having wheelsets meeting the requirements for equivalent conicity set out in the HS and CR rolling stock TSI, a joint investigation by the railway undertaking and the infrastructure manager is to be undertaken to determine the reason.

4.2.5.6. Railhead profile for plain line

All TSI categories of line

(1) The design of railhead profiles for plain line shall comprise:

(a) a lateral slope on the side of the railhead angled to between vertical and \(1/16\) with reference to the vertical axis of the railhead;

(b) the vertical distance between the top of this lateral slope and the top of the rail shall be less than 15 mm;

(c) a radius of at least 12 mm at the gauge corner;

(d) the horizontal distance between the crown of the rail and the tangent point shall be between 31 and 37 mm.

Figure 1

Railhead profile

1 Crown of rail
2 Tangent point
3 Lateral slope
4 Vertical axis of railhead
5 Gauge corner
4.2.5.7. Rail inclination
All TSI categories of line

4.2.5.7.1. Plain line
(1) The rail shall be inclined towards the centre of the track.
(2) The rail inclination for a given route shall be selected from the range 1/20 to 1/40.
(3) The value selected shall be declared in the Register of Infrastructure.

4.2.5.7.2. Requirements for switches and crossings
(1) The rail in switches and crossings shall be designed to be either vertical or inclined.
(2) If the rail is inclined, the designed inclination in switches and crossings shall be the same as for plain line.
(3) The inclination can be given by the shape of the active part of the railhead profile.
(4) For short sections of plain line between switches and crossings without inclination, the laying of rails without inclination is permitted.
(5) A short transition from inclined rail to vertical rail is permitted.

4.2.5.8. Track stiffness
All TSI categories of line
(1) Requirements for track stiffness as a complete system are an open point.

4.2.6. Switches and crossings

4.2.6.1. Means of locking
TSI categories of line IV-P, IV-F, IV-M, VI-P, VI-F and VI-M
(1) All movable parts of switches and crossings shall be equipped with a means of locking, except in marshalling yards and other tracks used only for shunting.

TSI categories of line V-P, V-F, V-M, VII-P, VII-F and VII-M
(2) All movable parts of switches and crossings shall be equipped with a means of locking where the maximum speed is more than 40 km/h, unless used exclusively in the trailing direction.

4.2.6.2. In-service geometry of switches and crossings
All TSI categories of line
(1) In this paragraph the TSI gives limiting in-service values that are compatible with geometrical characteristics of wheelsets as defined in the HS and CR rolling stock TSIs. It will be the task of the infrastructure manager to decide design values and to ensure, by means of the maintenance plan, that the in-service values do not fall outside the TSI limits. These limits are set as immediate action limits.

Figure 2
Point retraction in fixed common crossings

1 Intersection point (IP)
2 Theoretical reference line
3 Actual point (RP)
(2) The technical characteristics of switches and crossings shall comply with the following in-service values:

(a) Maximum value of free wheel passage in switches: 1 380 mm.

This value can be increased if the infrastructure manager demonstrates that the actuation and locking system of the switch is able to resist the lateral impact forces of a wheelset.

(b) Minimum value of fixed nose protection for common crossings: 1 392 mm.

This value is measured 14 mm below the running surface, and on the theoretical reference line, at an appropriate distance back from the actual point (RP) of the nose as indicated in Figure 2. For crossings with point retraction, this value can be reduced. In this case the infrastructure manager shall demonstrate that the point retraction is sufficient to guarantee that the wheel will not hit the nose at the actual point (RP).

(c) Maximum value of free wheel passage at crossing nose: 1 356 mm.

(d) Maximum value of free wheel passage at check rail/wing rail entry: 1 380 mm.

(e) Minimum flangeway width: 38 mm.

(f) Minimum flangeway depth: 40 mm.

(g) Maximum excess height of check rail: 70 mm.

(3) All relevant requirements for switches and crossings are also applicable to other technical solutions using switch rails, for example side modifiers used in multi-rail track.

4.2.6.3. **Maximum unguided length of fixed obtuse crossings**

All TSI categories of line

(1) The design value of the maximum unguided length shall be equivalent to 1 in 9 ($tg \alpha = 0,11, \alpha = 6°20'$) obtuse crossing with a minimum 45 mm raised check rail and associated with a minimum wheel diameter of 330 mm on straight through routes.

4.2.7. **Track resistance to applied loads**

4.2.7.1. **Track resistance to vertical loads**

All TSI categories of line

(1) The track, including switches and crossings, shall be designed to withstand at least the following forces:

(a) the axle load according to the performance parameters for the TSI categories of line as defined in Table 3;

(b) the maximum dynamic wheel force exerted by a wheelset on the track. The HS and CR rolling stock TSIs define a limit on the maximum dynamic wheel force for defined test conditions. The resistance of the track to vertical loads shall be consistent with these values;

(c) the maximum quasi static wheel force exerted by a wheelset on the track. The HS and CR rolling stock TSIs define a limit on the maximum quasi static wheel force for defined test conditions. The resistance of the track to vertical loads shall be consistent with these values.

4.2.7.2. **Longitudinal track resistance**

All TSI categories of line

4.2.7.2.1. Design forces

(1) The track, including switches and crossings, shall be designed to withstand longitudinal forces arising from braking. The HS and CR rolling stock TSIs define limits on deceleration which shall be used to determine the longitudinal forces arising from braking.

(2) Track shall also be designed to withstand the longitudinal thermal forces arising from temperature changes in the rail and to minimise the likelihood of track buckling.
4.2.7.2. Compatibility with braking systems

(1) Track shall be designed to be compatible with the use of magnetic track brakes for emergency braking.

(2) The compatibility (or otherwise) of the design of track adopted with the use of braking systems independent of wheel-rail adhesion conditions for service braking and for emergency braking shall be published in the Register of Infrastructure. Braking systems independent of wheel-rail adhesion conditions include magnetic track brakes and eddy current track brakes.

(3) Where the track is compatible with the use of braking systems independent of adhesion conditions, the Register of Infrastructure shall state any limitation on the use of the braking systems on which compatibility depends, taking into account local climatic conditions and the expected number of repeated brake applications at a given location.

4.2.7.3. Lateral track resistance

All TSI categories of line

(1) The track, including switches and crossings, shall be designed to withstand at least:

(a) the maximum total dynamic lateral force exerted by a wheelset on the track. The HS and CR rolling stock TSIs define a limit on the lateral forces exerted by a wheel set on the track. The lateral resistance of the track shall be consistent with these values,

(b) the quasi static guiding force exerted by a wheelset on the track. The HS and CR rolling stock TSIs define a limit on the quasi static guiding force \( Y_{qst} \) for defined radii and test conditions. The lateral resistance of the track shall be consistent with these values.

4.2.8. Structures resistance to traffic loads

(1) The requirements of EN 1991-2:2003 and Annex A2 to EN 1990:2002 issued as EN 1990:2002/A1:2005 specified in this chapter of the TSI are to be applied in accordance with the corresponding clauses in the national annexes to these standards if they exist.

4.2.8.1. Resistance of new bridges to traffic loads

All TSI categories of line — only for new structures on new or existing lines

4.2.8.1.1. Vertical loads

(1) Structures shall be designed to support vertical loads in accordance with the following load models, defined in EN 1991-2:2003:

(a) load model 71, as set out in EN 1991-2:2003 paragraph 6.3.2 (2)P;

(b) in addition, for continuous bridges, load model SW/0, as set out in EN 1991-2:2003 paragraph 6.3.3 (3)P.

(2) The load models shall be multiplied by the factor alpha \( (\alpha) \) as set out in EN 1991-2:2003 paragraphs 6.3.2 (3)P and 6.3.3 (5)P.

(3) The value of alpha \( (\alpha) \) shall be equal to or greater than the values set out in Table 6.

<table>
<thead>
<tr>
<th>Types of line or TSI categories of line</th>
<th>Minimum factor alpha ( (\alpha) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>1,1</td>
</tr>
<tr>
<td>V</td>
<td>1,0</td>
</tr>
<tr>
<td>VI</td>
<td>1,1</td>
</tr>
<tr>
<td>VII-P</td>
<td>0,83</td>
</tr>
<tr>
<td>VII-F, VII-M</td>
<td>0,91</td>
</tr>
</tbody>
</table>

(4) The load effects from the load models shall be enhanced by the dynamic factor \( \phi \) as set out in EN 1991-2:2003 paragraphs 6.4.3 (1)P and 6.4.5.2 (2).
4.2.8.1.2. Centrifugal forces

(1) Where the track on a bridge is curved over the whole or part of the length of the bridge, the centrifugal force shall be taken into account in the design of structures as set out in EN 1991-2:2003 paragraphs 6.5.1 (2), (4)P, (7).

4.2.8.1.3. Nosing forces

(1) The nosing force shall be taken into account in the design of structures as set out in EN 1991-2:2003 Section 6.5.2.

4.2.8.1.4. Actions due to traction and braking (longitudinal loads)

(1) Traction and braking forces shall be taken into account in the design of structures as set out in EN 1991-2:2003 paragraphs 6.5.3 (2)P, (4), (5) and (6). The direction of the traction and braking forces shall take account of the permitted directions of travel on each track.

4.2.8.1.5. Design track twist due to rail traffic actions

(1) The maximum total design track twist due to rail traffic actions shall not exceed the values set out in clause A2.4.4.2.2(3)P in Annex A2 to EN 1990:2002 issued as EN 1990:2002/A1:2005. The total design track twist comprises any twist which may be present in the track when the bridge is not subject to rail traffic actions, plus the track twist due to the total deformation of the bridge resulting from rail traffic actions.

4.2.8.2. Equivalent vertical loading for new earthworks and earth pressure effects

All TSI categories of line — only for new structures on new and existing lines

(1) Earthworks shall be designed to support vertical loads in accordance with the Load Model 71, as set out in EN 1991-2:2003 paragraph 6.3.6.4.

(2) Load model 71 shall be multiplied by the factor alpha (a) as set out in EN 1991-2:2003 paragraphs 6.3.2 (3)P. The value of a shall be equal to or greater than the values set out in Table 6.

4.2.8.3. Resistance of new structures over or adjacent to tracks

All TSI categories of line — only for new structures on new and existing lines


4.2.8.4. Resistance of existing bridges and earthworks to traffic loads

All TSI categories of line — only for existing structures on new or existing lines

(1) Bridges and earthworks shall be brought to a specified level of interoperability according to the TSI category of line as defined in Section 4.2.1.

(2) The minimum capability requirements for structures for each TSI category of line are given in Annex E. The values represent the minimum target level that structures must be capable of for the line to be declared interoperable.

(3) The following cases are relevant:

(a) Where an existing structure is replaced by a new structure then the new structure shall be in accordance with the requirements of Chapter 4.2.8.1 or 4.2.8.2.

(b) If the minimum capability of the existing structures expressed by the published EN line category in combination with the permitted speed satisfies the requirements in Annex E then the existing structures satisfy the relevant interoperability requirements.

(c) Where the capability of an existing structure does not satisfy the requirements in Annex E and works (e.g. strengthening) are being carried out to raise the capability of the structure to meet the requirements of this TSI (and the structure is not to be replaced by a new structure) then the structure shall be brought into conformity with the requirements in Annex E.
(4) For the British network, in clauses (2) and (3) above the EN line category may be replaced by route availability (RA) number (delivered in accordance with the national technical rule notified for this purpose) and consequently reference to Annex E are replaced by reference to Annex C.

4.2.9. Track geometrical quality and limits on isolated defects

4.2.9.1. Determination of immediate action, intervention, and alert limits

All TSI categories of line

(1) The infrastructure manager shall determine appropriate immediate action, intervention and alert limits for the following parameters:

(a) lateral alignment — standard deviations (alert limit only),

(b) longitudinal level — standard deviations (alert limit only),

(c) lateral alignment — isolated defects — mean to peak values,

(d) longitudinal level — isolated defects — mean to peak values,

(e) track twist — isolated defects — zero to peak value subject to the immediate action limits set out in the Section 4.2.9.2,

(f) variation of track gauge — isolated defects — nominal track gauge to peak value subject to the immediate action limits set out in the Section 4.2.9.3,

(g) mean track gauge over any 100 m length — nominal track gauge to mean value, subject to the immediate action limits set out in the Section 4.2.5.5.2,

(h) cant — design to peak value subject to the immediate action limits set out in Section 4.2.9.4.

(2) The measurement conditions for these parameters are set out in Chapter 5 of EN 13848-1:2003 +A1:2008.

(3) When determining these limits, the infrastructure manager shall take into account the track quality limits used as the basis for vehicle acceptance. Requirements for vehicle acceptance are set out in the CR and HS rolling stock TSI,s.

(4) The immediate action, intervention and alert limits adopted by the infrastructure manager shall be recorded in the maintenance plan required by Section 4.5 of this TSI.

4.2.9.2. The immediate action limit for track twist

All TSI categories of line

(1) The immediate action limit for track twist as an isolated defect is given as a zero to peak value. Track twist is defined as the algebraic difference between two cross levels taken at a defined distance apart, usually expressed as a gradient between the two points at which the cross level is measured. The cross level is measured at the nominal centres of the railheads.

(2) The track twist limit is a function of the measurement base applied (l) according to the formula:

\[ \text{Limit twist} = \frac{20}{l} + 3 \]

(a) where \( l \) is the measurement base (in m), with \( 1.3 \, m \leq l \leq 20 \, m \),

(b) with a maximum value of 7 mm/m.
(3) The infrastructure manager shall set out in the maintenance plan the basis on which it will measure the track in order to check compliance with this requirement. The basis of measurement shall include at least one measurement base between 2 and 5 m.

TSI categories of line IV-F, IV-M, V-F, V-M, VI-F, VI-M, VII-F and VII-M

(4) If the radius of horizontal curve is less than 420 m and cant \( D > (R - 100)/2 \), track twist shall be limited according to the formula: \( \text{Limit twist} = \left( \frac{20}{l} + 1.5 \right) \), with a maximum value between 6 mm/m and 3 mm/m depending on the twist base length as shown in Figure 4.

4.2.9.3. The immediate action limit for variation of track gauge

All TSI categories of line

The immediate action limits for variation of track gauge are set out in Table 7.

<table>
<thead>
<tr>
<th>Speed (km/h)</th>
<th>Dimensions (mm)</th>
<th>Nominal track gauge to peak value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V ≤ 80</td>
<td>− 9</td>
<td>+ 35</td>
</tr>
<tr>
<td>80 &lt; V ≤ 120</td>
<td>− 9</td>
<td>+ 35</td>
</tr>
</tbody>
</table>
### Table: Dimensions

<table>
<thead>
<tr>
<th>Speed (km/h)</th>
<th>Nominal track gauge to peak value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum track gauge</td>
</tr>
<tr>
<td>120 &lt; V ≤ 160</td>
<td>– 8</td>
</tr>
<tr>
<td>160 &lt; V ≤ 200</td>
<td>– 7</td>
</tr>
</tbody>
</table>

4.2.9.4. The immediate action limit for cant

**TSI categories of line IV-P, V-P, VI-P and VII-P**

(1) The in service cant shall be maintained within ±20 mm of the design cant, but the maximum cant permitted in service is 190 mm.

**TSI categories of line IV-F, IV-M, V-F, V-M, VI-F, VI-M, VII-F and VII-M**

(2) The in service cant shall be maintained within ±20 mm of the design cant, but the maximum cant permitted in service is 170 mm.

4.2.10. Platforms

(1) The requirements of this paragraph are only applicable to the passenger platforms where trains complying with the HS and CR rolling stock TSI are intended to stop on normal service.

4.2.10.1. Usable length of platforms

**All TSI categories of line**

(1) The platform length shall be sufficient to accommodate the longest interoperable train intended to stop at the platform in normal service. When determining the length of trains intended to stop at the platform, consideration shall be given to both the current service requirements and the reasonably foreseeable service requirements at least ten years following the bringing into service of the platform.

(2) It is permissible to build only the length of platform required for the current service requirement provided passive provision is made for the reasonably foreseeable future service requirements.

(3) The usable length of a platform shall be declared in the Register of Infrastructure.

4.2.10.2. Width and edge of platforms

**All TSI categories of line**

(1) The PRM TSI sets out the requirements for platform width and edge of the platform.

4.2.10.3. End of platforms

**All TSI categories of line**

(1) The PRM TSI sets out the requirements for the end of the platform.

4.2.10.4. Height of platforms

**All TSI categories of line**

(1) The PRM TSI sets out the requirements for platform height.

4.2.10.5. Offset of platforms

**All TSI categories of line**

(1) The PRM TSI sets out the requirements for platform offset.

4.2.11. Health, safety and environment

4.2.11.1. Maximum pressure variations in tunnels

**All TSI categories of line**

(1) The maximum pressure variation in tunnels and underground structures along the outside of any train complying with the HS and CR rolling stock TSI is intended to run in the specific tunnel at speeds of greater than 190 km/h shall not exceed 10 kPa during the time taken for the train to pass through the tunnel, at the maximum permitted speed.
4.2.11.2. **Noise and vibration limits and mitigation measures**  
All TSI categories of line  
(1) Noise limits and mitigation measures are an open point.  
(2) Vibration limits and mitigation measures are an open point.

4.2.11.3. **Protection against electric shock**  
All TSI categories of line  
(1) The requirements for protection against electric shock from the traction current system are ensured by the provisions set out in CR ENE TSI relating to the protective provisions of overhead contact line systems.

4.2.11.4. **Safety in railway tunnels**  
All TSI categories of line  
(1) Requirements for the safety in railway tunnels are set out in the SRT TSI.

4.2.11.5. **Effect of crosswinds**  
All TSI categories of line  
(1) Requirements for mitigating the effect of crosswinds are an open point.

4.2.12. **Provision for operation**  

4.2.12.1. **Distance markers**  
All TSI categories of line  
(1) Distance markers shall be provided at regular intervals along the track.  
(2) The nominal interval between distance markers shall be stated in the Register of Infrastructure.

4.2.13. **Fixed installations for servicing trains**  

4.2.13.1. **General**  
(1) This Section 4.2.13 sets out the infrastructure elements of the maintenance subsystem required for servicing trains.  
(2) The location and type of fixed installations for servicing trains shall be published in the Register of Infrastructure.

4.2.13.2. **Toilet discharge**  
All TSI categories of line  
(1) Fixed installations for toilet discharge shall be compatible with the characteristics of the retention toilet system specified in the HS and CR rolling stock TSIs.

4.2.13.3. **Train external cleaning facilities**  
All TSI categories of line  
(1) Where a washing plant is provided it shall be able to clean the outer sides of single or double-deck trains between a height of:  
   (a) 1 000 to 3 500 mm for a single-deck train,  
   (b) 500 to 4 300 mm for double-deck trains.  
(2) The washing plant shall be designed so that trains can to be driven through it at any speed between 2 km/h and 5 km/h.

4.2.13.4. **Water restocking**  
All TSI categories of line  
(1) Fixed equipment for water restocking shall be compatible with the characteristics of the water system specified in the HS and CR rolling stock TSIs.
(2) Fixed equipment for water supply on the interoperable network shall be supplied with drinking water meeting the requirements of the Council Directive 98/83/EC (1).

(3) The equipment’s mode of operation shall ensure that water delivered to the rolling stock complies with the quality specified by Directive 98/83/EC.

4.2.13.5. Refuelling
All TSI categories of line
(1) Refuelling equipment shall be compatible with the characteristics of the fuel system specified in the CR rolling stock TSI.

4.2.13.6. Electrical shore supply
All TSI categories of line
(1) Where provided, electrical shore supply shall be by means of one or more of the power supply systems specified in the HS and CR rolling stock TSIs.

4.3. Functional and technical specification of the interfaces
From the standpoint of technical compatibility, the interfaces of the infrastructure subsystem with the other subsystems are like described in the following paragraphs.

4.3.1. Interfaces with the rolling stock subsystem

<table>
<thead>
<tr>
<th>Interface</th>
<th>Reference conventional rail infrastructure TSI</th>
<th>Reference conventional rail locomotives and passenger RST TSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track gauge</td>
<td>4.2.5.1 Nominal track gauge</td>
<td>4.2.3.2.1 Mechanical and geometrical characteristics of Wheelset</td>
</tr>
<tr>
<td></td>
<td>4.2.5.6 Railhead profile for plain line</td>
<td>4.2.3.2.2 Mechanical and geometrical characteristics of Wheels</td>
</tr>
<tr>
<td></td>
<td>4.2.6.2 In-service geometry of switches and crossings</td>
<td></td>
</tr>
<tr>
<td>Gauges</td>
<td>4.2.4.1 Structure gauge</td>
<td>4.2.3.1. Gauging</td>
</tr>
<tr>
<td></td>
<td>4.2.4.2 Distance between track centres</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2.4.5 Minimum radius of vertical curve</td>
<td></td>
</tr>
<tr>
<td>Axle load and axle spacing</td>
<td>4.2.7.1 Track resistance to vertical loads</td>
<td>4.2.3.2 Axle load and wheel load</td>
</tr>
<tr>
<td></td>
<td>4.2.8.1 Resistance of new bridges to traffic loads</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2.8.2 Equivalent vertical loading for new earthworks and earth pressure effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2.8.4 Resistance of existing bridges and earthworks to traffic loads</td>
<td></td>
</tr>
<tr>
<td>Running characteristics</td>
<td>4.2.7.1 Track resistance to vertical loads</td>
<td>4.2.3.4.2.1 Limit values for running safely</td>
</tr>
<tr>
<td></td>
<td>4.2.7.3 Lateral track resistance</td>
<td>4.2.3.4.2.2 Track loading limit values</td>
</tr>
<tr>
<td></td>
<td>4.2.8.1.3 Nosing forces</td>
<td></td>
</tr>
<tr>
<td>Equivalent conicity</td>
<td>4.2.5.5 Equivalent conicity</td>
<td>4.2.3.4.3 Equivalent conicity</td>
</tr>
<tr>
<td>Longitudinal actions</td>
<td>4.2.7.2 Longitudinal track resistance</td>
<td>4.2.4.5 Braking performance</td>
</tr>
<tr>
<td></td>
<td>4.2.8.1.4 Actions due to traction and braking (longitudinal loads)</td>
<td></td>
</tr>
<tr>
<td>Minimum curve radius</td>
<td>4.2.4.4 Minimum radius of horizontal curve</td>
<td>4.2.3.6 Minimum curve radius</td>
</tr>
<tr>
<td>Horizontal curve radius</td>
<td>4.2.5.4 Cant deficiency</td>
<td>4.2.3.4.2.1 Limit values for running safety</td>
</tr>
<tr>
<td>Vertical curve acceleration</td>
<td>4.2.4.5 Minimum radius of vertical curve</td>
<td>4.2.3.1 Gauging</td>
</tr>
</tbody>
</table>

### Table 9

**Interfaces with the rolling stock subsystem, ‘freight wagons’ TSI**

<table>
<thead>
<tr>
<th>Interface</th>
<th>Reference conventional rail infrastructure TSI</th>
<th>Reference conventional rail freight wagons TSI</th>
</tr>
</thead>
</table>
| **Track gauge** | 4.2.5.1 Nominal track gauge  
4.2.5.6 Railhead profile for plain line  
4.2.6.2 In-service geometry of switches and crossings | 4.2.3.4 Vehicle dynamic behaviour |
| **Gauges** | 4.2.4.1 Structure gauge  
4.2.4.2 Distance between track centres  
4.2.4.5 Minimum radius of vertical curve | 4.2.3.1 Kinematic gauge |
| **Axle load and axle spacing** | 4.2.7.1 Track resistance to vertical loads  
4.2.7.3 Lateral track resistance  
4.2.8.1 Resistance of new bridges to traffic loads  
4.2.8.2 Equivalent vertical loading for new earthworks and earth pressure effects  
4.2.8.4 Resistance of existing bridges and earthworks to traffic loads | 4.2.3.2 Static axle load and linear load |
| **Running characteristics** | 4.2.7.1 Track resistance to vertical loads  
4.2.7.3 Lateral track resistance (b) | 4.2.3.4 Vehicle dynamic behaviour |
| **Longitudinal actions** | 4.2.7.2 Longitudinal track resistance  
4.2.8.1.4 Actions due to traction and braking (longitudinal loads) | 4.2.4.1 Braking performance |
| **Minimum curve radius** | 4.2.4.4 Minimum radius of horizontal curve | 4.2.2.1 Interface (e. g. coupling) between vehicles, between sets of vehicles and between trains |
| **Horizontal curve radius** | 4.2.5.4 Cant deficiency | 4.2.3.5. Longitudinal compressive forces |
| **Vertical curve acceleration** | 4.2.4.5 Minimum radius of vertical curve | 4.2.3.1 Kinematic gauge |
| **Aerodynamic effect** | 4.2.4.2 Distance between track centres  
4.2.8.3 Resistance of new structures over or adjacent to tracks  
4.2.11.1 Maximum pressure variations in tunnels | 4.2.6.2 Aerodynamic effects |
| **Crosswind** | 4.2.11.5 Effect of crosswinds | 4.2.6.3 Cross winds |
4.3.2. Interfaces with the energy subsystem

Table 10

<table>
<thead>
<tr>
<th>Interface</th>
<th>Reference conventional rail infrastructure TSI</th>
<th>Reference conventional rail energy TSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauges</td>
<td>4.2.4.1 Structure gauge</td>
<td>4.2.14 Pantograph gauge</td>
</tr>
<tr>
<td>Protection against electric shock</td>
<td>4.2.11.3 Protection against electric shock</td>
<td>4.7.3 Protective provisions of overhead contact line system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.7.4 Protective provisions of current return circuit</td>
</tr>
</tbody>
</table>

4.3.3. Interfaces with the control command and signalling subsystem

Table 11

<table>
<thead>
<tr>
<th>Interface</th>
<th>Reference conventional rail infrastructure TSI</th>
<th>Reference conventional rail control command and signalling TSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure gauge set for CCS installations</td>
<td>4.2.4.1 Structure gauge</td>
<td>4.2.5 ETCS and EIRENE air gap interfaces</td>
</tr>
<tr>
<td>Use of eddy current brakes</td>
<td>4.2.7.2 Longitudinal track resistance</td>
<td>4.2.16 Visibility of track-side control-command objects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annex A, Appendix 1, Section 5.2: Use of electric/magnetic brakes</td>
</tr>
</tbody>
</table>

4.3.4. Interfaces with the operation and traffic management subsystem

Table 12

<table>
<thead>
<tr>
<th>Interface</th>
<th>Reference conventional rail infrastructure TSI</th>
<th>Reference conventional rail operation and traffic management TSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of eddy current brakes</td>
<td>4.2.7.2 Longitudinal track resistance</td>
<td>4.2.2.6.2 Brake performance</td>
</tr>
<tr>
<td>Operating rules</td>
<td>4.4 Operating rules</td>
<td>4.2.1.2.2.2 Modified elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2.3.6 Degraded operation</td>
</tr>
</tbody>
</table>

4.4. Operating rules

4.4.1. Exceptional conditions relating to pre-planned works

(1) During pre-planned works, it may be necessary to temporarily suspend the specifications of the infrastructure subsystem and its interoperability constituents defined in Chapters 4 and 5 of this TSI. Specific operational provisions are set out in the CR Traffic Operation and Management TSI.

4.4.2. Degraded operation

(1) Events that affect the normal operation of a line may occur. The operational rules for dealing with such events are set out in the CR Traffic Operation and Management TSI.

4.4.3. Protection of workers against aerodynamic effects

(1) The infrastructure manager shall define the means for protecting workers against aerodynamic effects.

(2) For the trains complying with the HS and CR rolling stock TSIs, the infrastructure manager shall take into account the actual speed of the trains and the limit value of the aerodynamic effects given by the HS and CR rolling stock TSIs.
4.5. Maintenance plan

4.5.1. Before placing a line in service

(1) A maintenance file shall be prepared setting out at least:

(a) a set of values for immediate action limits,

(b) the measures taken (speed restriction, repair time) when prescribed values are exceeded,

related to the following elements:

i. requirements for controlling equivalent conicity in service,

ii. in service geometry of switches and crossings,

iii. track geometric quality and limits on isolated defects,

iv. platform edge as required by the ‘People with reduced mobility’ TSI.

4.5.2. After placing a line in service

(1) The infrastructure manager shall have a maintenance plan containing the items listed in Section 4.5.1 together with at least the following items related to the same elements:

(a) a set of values for intervention limits and alert limits,

(b) a statement about the methods, professional competences of staff and personal protective safety equipment necessary to be used,

(c) the rules to be applied for the protection of people working on or near the track,

(d) the means used to check that in-service values are respected.

4.6. Professional competences

(1) The professional competences required for the staff maintaining the infrastructure subsystem shall be detailed in the maintenance plan (see Section 4.5.2).

4.7. Health and safety conditions

(1) Health and safety conditions are dealt with compliance with requirements sections: 4.2.11.1 (Maximum pressure variation in tunnels), 4.2.11.2 (Noise and vibration limits and mitigation measures), 4.2.11.3 (Protection against electric shock), 4.2.10 (Platforms), 4.2.11.4 (Safety in railway tunnels), 4.2.13 (Fixed installations for servicing trains) and 4.4 (Operating rules).

4.8. Register of infrastructure

(1) In accordance with Article 35 of Directive 2008/57/EC, the Register of Infrastructure shall indicate the main features of the infrastructure subsystem.

(2) Annex D of this TSI indicates which information concerning the infrastructure subsystem shall be included in the Register of Infrastructure. The information to be included in the Register of Infrastructure required for other subsystems are set in the TSIs concerned.

5. INTEROPERABILITY CONSTITUENTS

5.1. Basis on which interoperability constituents have been selected

(1) The requirements of Section 5.3 are based on a traditional design of ballasted track with Vignole (flat-bottom) rail on concrete or wooden sleepers and fastening providing resistance to longitudinal slip by bearing on the rail foot.

(2) Components and subassemblies used for the construction of other designs of track are not considered to be interoperability constituents.

5.2. List of constituents

(1) For the purposes of this technical specification for interoperability, only the following elements, whether individual components or subassemblies of the track are declared to be ‘interoperability constituents’:

(a) the rail (5.3.1),
(b) the rail fastening systems (5.3.2),
(c) track sleepers (5.3.3).

(2) The following sections describe the specifications applicable to each of these constituents.

(3) Rails, fastenings and sleepers used for short length of track for specific purposes, for example in switches and crossings, at expansion devices, transition slabs and special structures, are not considered to be interoperability constituents.

5.3. **Constituents performances and specifications**

5.3.1. **The rail**

(1) The specifications of the ‘rail’ interoperability constituent are the following:

(a) railhead profile,
(b) moment of inertia of the rail cross section,
(c) rail hardness.

5.3.1.1. **Railhead profile**

(1) The railhead profile shall fulfil the requirements of Section 4.2.5.6 ‘Railhead profile for plain line’.

(2) The railhead profile shall allow requirements of Section 4.2.5.5.1 for ‘Design values for equivalent conicity’ to be met when used with a specified range of track gauge and rail inclinations consistent with the requirements of this TSI.

5.3.1.2. **Moment of inertia of the rail cross section**

(1) The moment of inertia is relevant to the requirements of Section 4.2.7 ‘Track resistance to applied loads’.

(2) The calculated value of moment of inertia \(I\) of designed rail section about the principal horizontal axis through the centre of gravity shall be at least 1 600 \( \text{cm}^4\).

5.3.1.3. **Rail hardness**

(1) The rail hardness is relevant to the requirements of Section 4.2.5.6 ‘Railhead profile for plain line’.

(2) The rail hardness measured at the crown of the railhead shall be at least 200 HBW.

5.3.2. **The rail fastening systems**

(1) The rail fastening system is relevant to the requirements of Section 4.2.7.2 for ‘Longitudinal track resistance’ and Section 4.2.7.3 ‘Lateral track resistance’ and Section 4.2.7.1 for ‘Track resistance to vertical loads’.

(2) The rail fastening system shall comply in laboratory test conditions with the following requirements:

(a) the longitudinal force required to cause the rail to begin to slip (i.e. move in an inelastic way) through a single rail fastening assembly shall be at least 7 kN,
(b) the rail fastening shall resist application of 3 000 000 cycles of the typical load applied in a sharp curve, such that the performance of the fastening in terms of clamping force and longitudinal restraint is not degraded by more than 20 % and vertical stiffness is not degraded by more than 25 %. The typical load shall be appropriate to:

i. the maximum axle load the rail fastening system is designed to accommodate,
ii. the combination of rail, rail inclination, rail pad and type of sleepers with which the fastening system may be used.

5.3.3. **Track sleepers**

(1) Track sleepers shall be designed such that when they are used with a specified rail and rail fastening system they will have properties that are consistent with the requirements of 4.2.5.1 for ‘Nominal track gauge’, Section 4.2.5.5.2 for ‘Requirements for controlling equivalent conicity in service (Table 5: Minimum mean gauge in service on straight track and in curves of radius \(R > 10 000\) m)’, Section 4.2.5.7 for ‘Rail inclination’ and Section 4.2.7 for ‘Track resistance to applied loads’.
6. ASSESSMENT OF CONFORMITY OF INTEROPERABILITY CONSTITUENTS AND EC VERIFICATION OF THE SUBSYSTEMS

6.1. Interoperability constituents

6.1.1. Conformity assessment procedures

(1) The conformity assessment procedure of interoperability constituents as defined in Chapter 5 of this TSI shall be carried out by application of the relevant modules.

6.1.2. Application of modules

(1) The following modules for conformity assessment of interoperability constituents are used:

(a) CA ‘Internal production control’

(b) CB ‘EC type examination’

(c) CD ‘Conformity to type based on quality management system of the production process’

(d) CF ‘Conformity to type based on product verification’

(e) CH ‘Conformity based on full quality management system’

(2) The modules for conformity assessment of interoperability constituents shall be chosen from those shown in Table 13.

<table>
<thead>
<tr>
<th>Procedures</th>
<th>Rail</th>
<th>Rail fastening system</th>
<th>Track sleepers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placed on the EU market before entry into force of this TSI</td>
<td>CA or CH</td>
<td>CA or CH</td>
<td></td>
</tr>
<tr>
<td>Placed on the EU market after entry into force of this TSI</td>
<td>CB+CD or CB+CF or CH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) In the case of products placed on the market before the publication of this TSI, the type is considered to have been approved and therefore EC type examination (module CB) is not necessary, provided that the manufacturer demonstrates that tests and verification of interoperability constituents have been considered successful for previous applications under comparable conditions and are in conformity with the requirements of this TSI. In this case these assessments shall remain valid in the new application. If it is not possible to demonstrate that the solution is positively proven in the past, the procedure for interoperability constituents placed on the EU market after publication of this TSI applies.

(4) The conformity assessment of interoperability constituents shall cover the phases and characteristics as indicated in Table 20 of Annex A to this TSI.

6.1.3. Innovative solutions for interoperability constituents

(1) If an innovative solution is proposed for an interoperability constituent as defined in Section 5.2, the manufacturer or his authorised representative established within the Community shall state the deviations from the relevant clause of this TSI and submit them to the Commission for analysis.

(2) In case the analysis results in a favourable opinion, the appropriate functional and interface specifications for the constituent and the assessment method will be developed under the authorisation of the Commission.

(3) The appropriate functional and interface specifications and the assessment methods so produced shall be incorporated in the TSI by the revision process.

(4) By the notification of a decision of the Commission, taken in accordance with Article 29 of the Directive, the innovative solution may be permitted to be used before being incorporated into the TSI by the revision process.
6.1.4. EC declaration of conformity for interoperability constituents

6.1.4.1. Interoperability constituents subject to other Community Directives

(1) Article 13(3) of Directive 2008/57/EC, states ‘Where the interoperability constituents are the subject of other Community Directives covering other aspects, the EC declaration of conformity or suitability for use shall, in such instances, state that the interoperability constituents also meet the requirements of those other Directives.’

(2) According to Annex IV (3) of Directive 2008/57/EC, the EC declaration of conformity shall be accompanied by the statement setting out the condition of use.

6.1.4.2. EC declaration of conformity for the rail

(1) The EC declaration of conformity shall be accompanied by statement setting out the range of track gauge and rail inclination for which the railhead profile allows the requirements of Section 4.2.5.5.1 to be met.

6.1.4.3. EC declaration of conformity for rail fastening systems

(1) The EC declaration of conformity shall be accompanied by statement setting out:

(a) the combination of rail, rail inclination, rail pad and type of sleepers with which the fastening system may be used

(b) the maximum axle load the rail fastening system is designed to accommodate.

6.1.4.4. EC declaration of conformity for track sleepers

(1) The EC declaration of conformity shall be accompanied by statement setting out the combination of rail, rail inclination and type of rail fastening system with which the sleeper may be used.

6.2. Infrastructure subsystem

6.2.1. General provisions

(1) At the request of the applicant, the notified body carries out the EC verification of the infrastructure subsystem in accordance with Article 18 and Annex VI of Directive 2008/57/EC and in accordance with the provisions of the relevant modules.

(2) If the applicant demonstrates that tests or verifications of an infrastructure subsystem have been successful for previous applications of a design in similar circumstances, the notified body shall take these tests and verifications into account for the EC verification.

(3) The EC verification of the infrastructure subsystem shall cover the phases and characteristics indicated in Table 21 in Annex B to this TSI. Particular assessment procedures for specific basic parameters of Infrastructure subsystem are included in Section 6.2.4.

(4) The applicant shall draw up the EC declaration of verification for the infrastructure subsystem in accordance with Article 18 of and Annex V to Directive 2008/57/EC.

6.2.2. Application of modules

(1) For the EC verification procedure of the infrastructure subsystem, the applicant may choose either:

(a) Module SG: EC verification based on unit verification, or

(b) Module SH1: EC verification based on full quality management system plus design examination.

6.2.2.1. Application of module SG

(1) In the case where EC verification is most effectively undertaken by using information collected by the infrastructure manager, contracting entity or the main contractors involved (for example data obtained using track recording vehicle or other measuring devices), the notified body shall take this information into account to assess conformity.

6.2.2.2. Application of module SH1

(1) The SH1 module may be chosen only where the activities contributing to the proposed subsystem to be verified (design, manufacturing, assembling, installation) are subject to a quality management system for design, production, final product inspection and testing, approved and surveyed by a notified body.

6.2.3. Innovative solutions

(1) If the subsystem includes an innovative solution as mentioned in Section 4.1, the applicant shall state the deviation from the relevant clauses of the TSI and submit them to the Commission.
In case of favourable opinion, the appropriate functional and interface specifications, and the assessment methods for this solution will be developed.

The appropriate functional and interface specifications and the assessment methods so produced shall then be incorporated in the TSI by the revision process.

By the notification of a decision of the Commission, taken in accordance with Article 29 of the Directive, the innovative solution may be permitted to be used before being incorporated into the TSI by the revision process.

### 6.2.4. Particular assessment procedures for subsystem

#### 6.2.4.1. Assessment of structure gauge

- **Assessment of structure gauge** is to be made using the results of calculations made by the infrastructure manager or the contracting entity on the basis of Chapters 5, 7, 10 and Annex C of EN 15273-3:2009.

#### 6.2.4.2. Assessment of distance between track centres

- **Assessment of the distance between track centres** is to be made using the results of calculations made by the infrastructure manager or the contracting entity on the basis of Chapter 9 of EN 15273-3:2009.

#### 6.2.4.3. Assessment of cant deficiency

- **Section 4.2.5.4.1** states that 'It is permissible for trains specifically designed to travel with higher cant deficiency (multiple units with lower axle loads; trains equipped with a cant deficiency compensation system) to run with higher cant deficiency values, subject to a demonstration that this can be achieved safely'.

- (2) The demonstration of safety is not subject to a notified body verification.

#### 6.2.4.4. Assessment of design values for equivalent conicity

- **Assessment of design values for equivalent conicity** is to be made using the results of calculations made by the infrastructure manager or the contracting entity on the basis of EN 15302:2008.

#### 6.2.4.5. Assessment of minimum value of mean track gauge

- **The measurement method for track gauge** is given in Section 4.2.1 of EN 13848-1:2003 + A1:2008.

#### 6.2.4.6. Assessment of maximum pressure variations in tunnels

- **Assessment of maximum pressure variation in the tunnel** (10 kPa criterion) is to be made using the results of calculations made by the infrastructure manager or the contracting entity on the basis of all operational conditions with all the trains complying with the high speed and conventional rail rolling stock TSI and intended to run at speeds of greater than 190 km/h in the specific tunnel to be assessed.

- (2) The input parameters to be used are to be such that the reference characteristic pressure signature of the trains set out in the HS rolling stock TSI is fulfilled.

- (3) The reference cross section areas of the interoperable trains to be considered is to be, independently to each motor or trailer vehicle:
  - (a) 12 m² for vehicles designed for GC reference kinematic profile,
  - (b) 11 m² for vehicles designed for GB reference kinematic profile,
  - (c) 10 m² for vehicles designed for smaller kinematic profiles.

- (4) The assessment may take into account the construction features which reduce the pressure variation (tunnel entrance shape, shafts, etc.) if any, as well as the tunnel length.

#### 6.2.4.7. Assessment of geometry of switches and crossings

- **Assessment of switches and crossings** at the design phase is required to verify that the design values used are consistent with the in-service limiting values set out in Section 4.2.6.2.

- (2) Assessment of fixed obtuse crossings at the design phase is also required to verify that the requirements for unguided length in Section 4.2.6.3 are met.
6.2.4.8. Assessment of new structures

(1) Assessment of structures is to be made by only checking the traffic loads used for design against the minimum requirements of 4.2.8.1, 4.2.8.2 and 4.2.8.3. The notified body is not required to review the design nor carry out any calculations. When reviewing the value of alpha used in the design according to 4.2.8.1 and 4.2.8.2 it is only necessary to check that the value of alpha satisfies Table 6.

6.2.4.9. Assessment of existing structures

(1) Assessment of existing structures is to be made by checking that the values of EN line categories (and if relevant locomotive classes) in combination with the permitted speed published by the infrastructure manager for the lines containing the structures satisfy the requirements of Annex E of this TSI.

6.2.4.10. Assessment of fixed installations for servicing trains

(1) Assessment of fixed installations for servicing trains is in the responsibility of the Member State concerned.

6.2.5. Technical solutions giving presumption of conformity at design phase

6.2.5.1. Assessment of track resistance for plain line

(1) Plain line ballasted track conforming to the following characteristics is deemed to have met the requirements set out in Section 4.2.7 related to track resistance to longitudinal, vertical and lateral forces:

(a) The requirements for track components, defined in Chapter 5 ‘Interoperability constituents’ for the rail (5.3.1), rail fastening systems (5.3.2) and sleepers (5.3.3) interoperability constituents are met;

(b) There are at least 1,500 rail fastenings per rail, per kilometre length.

6.2.5.2. Assessment of track resistance for switches and crossings

(1) Switches and crossings in ballasted track conforming to the following characteristics are deemed to have met the requirements set out in Section 4.2.7 related to track resistance to longitudinal, vertical and lateral forces:

(a) The requirements defined in Chapter 5 ‘Interoperability constituents’ for the rail (5.3.1) are met for the plain rails in the switches and crossings and corresponding switch rails and crossings are used;

(b) The requirements defined in Chapter 5 ‘Interoperability constituents’ for rail fastening systems (5.3.2) are met by all fastenings, other than fastenings used at movable parts of switches and crossings;

(c) There are at least equivalent to 1,500 rail fastenings per rail, per kilometre length averaged over the length of the switches and crossings.

6.3. EC verification when speed is used as a migration criterion

(1) Section 7.4 permits a line to be put into service at a lower speed than the ultimate intended speed. This section sets out requirements for EC verification in this circumstance.

(2) Some limiting values set out in Chapter 4 depend on the intended speed of the route.

Conformity should be assessed at the intended ultimate speed; however it is permissible to assess speed dependant characteristics at the lower speed at the time of placing in service.

(3) The conformity of the other characteristics for the intended speed of the route remains valid.

(4) To declare the interoperability at this intended speed, it is only necessary to assess the conformity of the characteristics temporarily not respected, when they are brought up to the required level.

6.4. Assessment of maintenance plan

(1) Section 4.5 requires the infrastructure manager to have for each conventional line a maintenance plan for the infrastructure subsystem.

(2) The notified body shall confirm that the maintenance file exists and contains the items listed in Section 4.5.1. The notified body is not responsible for assessing the suitability of the detailed requirements set out in the maintenance file.
(3) The notified body shall include copy of the maintenance file required by Section 4.5.1 of this TSI in the technical file referred to in Article 18(3) of Directive 2008/57/EC.

6.5. **Assessment of Register of Infrastructure**

(1) Section 4.8 requires that the Register of Infrastructure shall indicate the main features of the infrastructure subsystem. The notified body is responsible for assessing that those features have been prepared for the Register of Infrastructure.

6.6. **Subsystems containing interoperability constituents not holding an EC declaration**

6.6.1. **Conditions**

(1) During the transition period provided for in Article 6 of this Decision, a notified body is permitted to issue an EC certificate of verification for a subsystem even if some of the interoperability constituents incorporated within the subsystem are not covered by the relevant EC declarations of conformity and/or suitability for use according to this TSI, if the following criteria are complied with:

   (a) the conformity of the subsystem has been checked against the requirements of Chapter 4 and in relation to Chapters 6.2 to 7 (except 7.6. ‘Specific cases’) of this TSI by the notified body. Furthermore the conformity of the ICs to Chapter 5 and 6.1 does not apply, and

   (b) the interoperability constituents, which are not covered by the relevant EC declaration of conformity and/or suitability for use, have been used in a subsystem already approved and put in service in at least one of the Member State before the entry in force of this TSI.

(2) EC declarations of conformity and/or suitability for use shall not be drawn up for the interoperability constituents assessed in this manner.

6.6.2. **Documentation**

(1) The EC certificate of verification of the subsystem shall indicate clearly which interoperability constituents have been assessed by the notified body as part of the subsystem verification.

(2) The EC declaration of verification of the subsystem shall indicate clearly:

   (a) Which interoperability constituents have been assessed as part of the subsystem;

   (b) Confirmation that the subsystem contains the interoperability constituents identical to those verified as part of the subsystem;

   (c) For those interoperability constituents, the reason(s) why the manufacturer did not provide an EC Declaration of conformity and/or suitability for use before its incorporation into the subsystem, including the application of national rules notified under Article 17 of Directive 2008/57/EC.

6.6.3. **Maintenance of the subsystems certified according to 6.6.1**

(1) During the transition period as well as after the transition period has ended, until the subsystem is upgraded or renewed (taking into account the decision of Member State on application of TSIs), the interoperability constituents which do not hold an EC Declaration of conformity and/or suitability for use and of the same type are permitted to be used as maintenance related replacements (spare parts) for the subsystem, under the responsibility of the body responsible for maintenance.

(2) In any case the body responsible for maintenance must ensure that the components for maintenance related replacements are suitable for their applications, are used within their area of use, and enable interoperability to be achieved within the rail system while at the same time meeting the essential requirements. Such components must be traceable and certified in accordance with any national or international rule, or any code of practice widely acknowledged in the railway domain.

7. **IMPLEMENTING THE INFRASTRUCTURE TSI**

7.1. **Application of this TSI to conventional rail lines**

(1) Chapters 4 to 6 and any specific provisions in Sections 7.2 to 7.6 below apply in full to the lines coming within the geographical scope of this TSI which will be put into service as interoperable lines after this TSI enters into force.
The Member States shall develop a national migration strategy which specifies for TEN lines those elements of the infrastructure subsystem, which are required for interoperable services (e.g. tracks, sidings, stations, marshalling yards) and therefore need to comply with this TSI. This migration strategy shall include plans related to renewal and upgrading. In specifying those elements the Member States shall consider the coherence of the system as a whole.

7.2. Application of this TSI to new conventional rail lines

(1) New core TEN lines (type IV) shall satisfy the requirements of TSI category of line IV-P, IV-F or IV-M.

(2) New other TEN lines (type VI) shall satisfy the requirements of TSI category of line VI-P, VI-F or VI-M. It is also permissible for the line to satisfy the requirements of TSI category of line IV-P, IV-F or IV-M respectively.

(3) For the purpose of this TSI a ‘new line’ means a line that creates a route where none currently exists.

(4) The following situations, for example to increase speed or capacity, may be considered as the construction of an upgraded line rather than a new line:

(a) the realignment of part of an existing route,

(b) the creation of a bypass,

(c) the addition of one or more tracks on an existing route, regardless of the distance between the original tracks and the additional tracks.

7.3. Application of this TSI to existing conventional rail lines

Four possible cases of application of this TSI are relevant.

7.3.1. Upgrading of a line

(1) In accordance with Directive 2008/57/EC, Article 2(m), ‘upgrading’ means any major modification work on a subsystem or part of a subsystem which improves the overall performance of the subsystem.

(2) The infrastructure subsystem of a line is considered to be upgraded when at least the performance parameters axle load and gauge as defined in Section 4.2.2 are met. In these cases, the Member State shall check that the file referred to in Article 20.1 of Directive 2008/57/EC meets the following requests:

(2.1) Upgrading of existing core TEN lines shall be in accordance with the requirements of TSI category of line V-P, V-F and V-M. (An upgrade to the requirements of type of line IV is permissible.)

(2.2) Upgrading of existing other TEN lines shall be in accordance with the requirements of TSI category of line VII-P, VII-F or VII-M. (An upgrade to the requirements of type of line VI is permissible.)

(2.3) For other TSI parameters, according to Article 20(1) of the Directive 2008/57/EC, the Member State decide to what extent the TSI need to be applied to the project.

(3) Where Article 20(2) of the Directive 2008/57/EC applies because the upgrading is subject of an authorisation of placing into service, the Member State decides which requirements of the TSI must be applied taking into account the migration strategy referred to in Section 7.1.

(4) Where Article 20(2) of the Directive 2008/57/EC does not apply because the upgrading is not subject of an authorisation of placing into service, the conformity with this TSI is recommended. Where it is not possible to achieve conformity, the contracting entity informs the Member State of the reasons thereof.

(5) For a project including elements not being TSI conform, the procedures for the assessment of conformity and EC verification to be applied should be agreed with the Member State.

7.3.2. Renewal of a line

(1) In accordance with Directive 2008/57/EC, Article 2(n), ‘renewal’ means any major substitution work on a subsystem or part subsystem which does not change the overall performance of the subsystem.

(2) For this purpose major substitution should be interpreted as a project undertaken to systematically replace elements of a line or a section of a line in consistency with the national migration plan. Renewal differs from a substitution in the framework of maintenance, referred to in Section 7.3.3 below, in that it gives the opportunity to achieve a TSI compliant route. A renewal is effectively the same case as upgrading, but without a change in performance parameters.
(3) Where Article 20(2) of the Directive 2008/57/EC applies because the renewal is subject of an authorisation of placing into service, the Member State decides which requirements of the TSI must be applied taking into account the migration strategy referred to in Section 7.1.

(4) Where Article 20(2) of the Directive 2008/57/EC does not apply because the renewal is not subject of an authorisation of placing into service, the conformity with this TSI is recommended. Where it is not possible to achieve conformity, the contracting entity informs the Member State of the reasons thereof.

(5) For a project including elements not being TSI conform, the procedures for the assessment of conformity and EC verification to be applied should be agreed with the Member State.

7.3.3. Substitution in the framework of maintenance

(1) Where the parts of a subsystem on a line are maintained, the formal verification and authorisation for placing into service is not required in accordance with this TSI. However, maintenance replacements should be, as far as is reasonably practicable, undertaken in accordance with the requirements of this TSI.

(2) The objective should be that maintenance replacements progressively contribute the development of an interoperable line.

(3) In order to get a valuable part of the infrastructure subsystem for a progressive process towards interoperability, a group of basic parameters should always be adapted together. These groups are the following:

(a) Line layout,
(b) Track parameters,
(c) Switches and crossings,
(d) Track resistance to applied loads,
(e) Structures resistance to traffic loads,
(f) Platforms.

(4) In such cases, account must be taken of the fact that each of these elements taken in isolation does not make it possible on its own to ensure the conformity of the whole: the conformity of a subsystem can only be stated globally, that is when all the elements have been brought into conformity with the TSI.

7.3.4. Existing lines that are not subject to a renewal or upgrading project

(1) An existing subsystem may allow the circulation of TSI-conform vehicles whilst meeting the essential requirements of Directive 2008/57/EC. The infrastructure manager should be able in this case, on a voluntary basis, to complete the Register of Infrastructure set out in Article 35 of Directive 2008/57/EC in accordance with Annex D of this TSI.

(2) The procedure to be used for the demonstration of the level of compliance with the basic parameters of the TSI shall be defined in the specification of Register of Infrastructure to be adopted by the Commission in accordance with that Article.

7.4. Speed as migration criterion

(1) It is permissible to bring a line into service as an interoperable line at a lower speed than its intended ultimate line speed. However, when it is the case the line should not be constructed in a way that inhibits future adoption of the intended ultimate line speed.

(2) For example the distance between track centres shall be suitable for the intended ultimate line speed but the cant will need to be appropriate to the speed at the time the line is brought into service.

(3) Requirements for assessment of conformity in this circumstance are set out in Section 6.3.

7.5. Compatibility of infrastructure and rolling stock

(1) Rolling stock conforming to the rolling stock TSIs is not automatically compatible with all lines complying with this Infrastructure TSI. For example, a GC gauge vehicle is not compatible with a GB gauge tunnel.
The design of the TSI categories of line as defined in Chapter 4 is generally compatible with the operation of vehicles categorised in accordance with EN 15528:2008 at up to the maximum speed as shown in Annex E. However, there may be a risk of excessive dynamic effects including resonance in certain bridges which may further impact the compatibility of vehicles and infrastructure.

Checks, based on specific operational scenarios agreed between the infrastructure manager and the railway undertaking, may be undertaken to demonstrate the compatibility of vehicles operating above the maximum speed shown in Annex E.

As stated in Section 4.2.2 of this TSI, it is permissible to design new and upgraded lines such that they will also accommodate larger gauges, higher axle loads, greater speeds and longer trains than those specified.

7.6. Specific cases

The following specific cases may be applied on particular networks. These specific cases are classified as:

(a) ‘P’ cases: permanent cases,

(b) ‘T’ cases: temporary cases, where it is recommended that the target system is reached by 2020 (an objective set in Decision No 1692/96/EC, as amended by Decision No 884/2004/EC (2)).

The specific cases set out in Sections 7.6.1 to 7.6.13 should be read in conjunction with the relevant sections of Chapter 4. Unless otherwise indicated (for example, in the case of an additional requirement), the specific cases replace the corresponding requirements given in Chapter 4. Where the requirements of the relevant section in Chapter 4 are not subject to a specific case, those requirements have not been duplicated in Sections 7.6.1 to 7.6.13, and continue to apply unmodified.

7.6.1. Particular features on the Estonian network

The specific cases for 1 520/1 524 mm track gauge system are an open point.

7.6.2. Particular features on the Finnish network

7.6.2.1. Structure gauge (4.2.4.1)

P cases

All TSI categories of line — clauses (1) and (2)

(1) The Structure gauge shall be set on the basis of the gauge FIN 1.

(2) Calculations of the structure gauge shall be done using the static or kinematic method in accordance with the requirements of EN 15273-3:2009 Annex D Section D.4.4.

7.6.2.2. Minimum radius of horizontal curve (4.2.4.4)

P cases

All TSI categories of line — clause (4)

(4) Reverse curves with radii in the range from 150 m to 300 m shall be designed according to national rules notified for this purpose to prevent buffer locking.

7.6.2.3. Nominal track gauge (4.2.5.1)

P cases

All TSI categories of line — clause (1)

(1) The nominal track gauge shall be 1 524 mm.

7.6.2.4. Design values for equivalent conicity (4.2.5.5.1)

P cases

All TSI categories of line — clause (2)

(2) For the nominal track gauge of 1 524 mm the following wheelsets shall be modelled passing over the designed track conditions (simulated by calculation according to EN 15302:2008):

(a) S 1002 as defined in EN 13715:2006 Annex C with SR = 1 505 mm,

(b) S 1002 as defined in EN 13715:2006 Annex C with SR = 1 511 mm,
7.6.2.5. Requirements for controlling equivalent conicity in service (4.2.5.5.2)

P cases

All TSI categories of line — Table 5

Table 14

<table>
<thead>
<tr>
<th>Speed range (km/h)</th>
<th>Mean gauge (mm) over 100 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>v ≤ 60</td>
<td>assessment not required</td>
</tr>
<tr>
<td>60 &lt; v ≤ 160</td>
<td>1 519</td>
</tr>
<tr>
<td>160 &lt; v ≤ 200</td>
<td>1 519</td>
</tr>
</tbody>
</table>

7.6.2.6. In-service geometry of switches and crossings (4.2.6.2)

P cases

All TSI categories of line — clause (2)

(2) The technical characteristics of switches and crossings for the nominal track gauge of 1 524 mm shall comply with the following in-service values:

(a) Maximum value of free wheel passage in switches: 1 469 mm.

(b) Minimum value of fixed nose protection for common crossings: 1 478 mm.

(c) Maximum value of free wheel passage at crossing nose: 1 440 mm.

(d) Maximum value of free wheel passage at check rail/wing rail entry: 1 469 mm.

(e) Maximum excess height of the check rail is 55 mm.

Additional requirements in (a) and (b) remain unchanged.

7.6.3. Particular features on the Hellenic network

7.6.3.1. Performance parameters (4.2.2)

P cases

All TSI categories of line — clauses (2), (6) and (7)

(2) New and upgraded 1 000 mm lines (of Peloponese) on the trans-European conventional rail system shall be designed to a gauge according to national rules notified for this purpose and have an axle load of 14 t.

(6) The actual performance parameters for each section of track for the 1 000 mm lines (on Peloponese) shall be published in the Register of Infrastructure.

(7) The published information relating to axle load shall be published in combination with the permitted speed.

7.6.3.2. Structure gauge (4.2.4.1)

P cases

All TSI categories of line — clauses (1) and (2)

(1) The structure gauge for the 1 000 mm lines (of Peloponese) shall be set according to national rules notified for this purpose.
7.6.3.3. **Distance between track centres (4.2.4.2)**

*P cases*

All TSI categories of line — clause (1) and (2)

(1) The distance between track centres for the 1 000 mm lines (of Peloponnese) shall be set on the basis of the gauge according to national rules notified for this purpose.

7.6.3.4. **Maximum gradients (4.2.4.3)**

*P cases*

TSI categories of line IV-F, IV-M, VI-F and VI-M — clauses (3) and (4)

(3) Maximum gradients as steep as 20 mm/m are permitted for main tracks at the design phase.

7.6.3.5. **Minimum radius of horizontal curve (4.2.4.4)**

*P cases*

All TSI categories of line — clause (2)

(2) For stabling tracks or sidings the minimum horizontal design curve radius for the 1 000 mm lines (of Peloponnese) shall not be less than 110 m.

7.6.3.6. **Minimum radius of vertical curve (4.2.4.5)**

*P cases*

All TSI categories of line — clause (1)

(1) Vertical alignment of stabling and service tracks for the 1 000 mm lines (of Peloponnese) shall not include curves of radii less than 500 m on a crest or in a hollow.

7.6.3.7. **Nominal track gauge (4.2.5.1)**

*P cases*

All TSI categories of line — clause (1)

(1) The nominal track gauge shall be either 1 435 mm or 1 000 mm.

7.6.3.8. **In-service geometry of switches and crossings (4.2.6.2)**

*P cases*

All TSI categories of line — clause (2)

(2) The technical characteristics of switches and crossings for the nominal track gauge of 1 000 mm (of Peloponnese) shall comply with the following in-service values:

(a) Maximum value of free wheel passage in switches: 946 mm.

(b) Minimum value of fixed nose protection for common crossings: 961 mm.

(c) Maximum value of free wheel passage at crossing nose: not applicable.

(d) Maximum value of free wheel passage at check rail/wing rail entry: 943 mm.

Additional requirements in (a) and (b) remain unchanged.

7.6.3.9. **Track resistance to vertical loads (4.2.7.1)**

*P cases*

All TSI categories of line — clause (a)

(a) The track for the 1 000 mm lines (of Peloponnese), including switches and crossings, shall be designed to withstand at least the maximum static axle load of 14 t.
7.6.3.10. Resistance of new bridges to traffic loads (4.2.8.1) — vertical loads (4.2.8.1.1)

P cases

All TSI categories of line — only for new structures on new or existing lines — clause (3)

(3) The value of alpha (a) for 1 000 mm lines (of Peloponnese) shall be equal to or greater than 0.75.

7.6.4. Particular features on the Irish network

7.6.4.1. Performance parameters (4.2.2) — clause (2) — Table 3, column ‘train length’

(2) New and upgraded lines on the trans-European conventional rail system shall be designed to length of passenger trains at least 215 m and to length of freight trains at least 350 m, according to national rules notified for this purpose.

7.6.4.2. Structure gauge (4.2.4.1)

P cases

TSI categories of line IV-P, IV-F, IV-M, VI-P, VI-F and VI-M — clauses (1) and (2)

(1) The structure gauge shall be set on the basis of the IRL 1 uniform gauge according to national rules notified for this purpose.

TSI categories of line V-P, V-F, V-M, VII-P, VII-F and VII-M — clauses (1) and (2)

(1) The structure gauge shall be set on the basis of the IRL 2 uniform gauge according to national rules notified for this purpose.

7.6.4.3. Distance between track centres (4.2.4.2)

P cases

TSI categories of line IV-P, IV-F, IV-M, VI-P, VI-F and VI-M — clause (1) and (2)

(1) The minimum distance between track centres shall be set on the basis of the gauge IRL 1 according to national rules notified for this purpose.

TSI categories of line V-P, V-F, V-M, VII-P, VII-F and VII-M — clause (1) and (2)

(1) The minimum distance between track centres shall be set on the basis of the gauge IRL 2 according to national rules notified for this purpose.

7.6.4.4. Nominal track gauge (4.2.5.1)

P cases

All TSI categories of line — clause (1)

(1) The nominal track gauge shall be 1 600 mm.

7.6.4.5. Design values for equivalent conicity (4.2.5.5.1)

P cases

All TSI categories of line — clause (2)

(2) For the nominal track gauge of 1 600 mm the following wheelsets shall be modelled passing over the designed track conditions (simulated by calculation according to EN 15302:2008):

(a) S 1002 as defined in EN 13715:2006 Annex C with SR = 1 585 mm,

(b) S 1002 as defined in EN 13715:2006 Annex C with SR = 1 591 mm,

(c) GV 1/40 as defined in EN 13715:2006 Annex B with SR = 1 585 mm,

(d) GV 1/40 as defined in EN 13715:2006 Annex B with SR = 1 591 mm,

(e) EPS as defined in EN 13715:2006 Annex D with SR = 1 585 mm.
7.6.4.6. Requirements for controlling equivalent conicity in service (4.2.5.5.2)

**P cases**

*All TSI categories of line — Table 5*

<table>
<thead>
<tr>
<th>Speed range (km/h)</th>
<th>Minimum mean gauge (mm) over 100 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v \leq 60$</td>
<td>assessment not required</td>
</tr>
<tr>
<td>$60 &lt; v \leq 160$</td>
<td>1 595</td>
</tr>
<tr>
<td>$160 &lt; v \leq 200$</td>
<td>1 595</td>
</tr>
</tbody>
</table>

7.6.4.7. In-service geometry of switches and crossings (4.2.6.2)

**P cases**

*All TSI categories of line — clause (2)*

(2) The technical characteristics of switches and crossings for the nominal track gauge of 1 600 mm shall comply with the following in-service values:

(a) Maximum value of free wheel passage in switches: 1 546 mm.

(b) Minimum value of fixed nose protection for common crossings: 1 556 mm.

(c) Maximum value of free wheel passage at crossing nose: 1 521 mm.

(d) Maximum value of free wheel passage at check rail/wing rail entry: 1 546 mm.

Additional requirements in (a) and (b) remain unchanged.

7.6.5. Particular features on the Latvian network

The specific cases for 1 520/1 524 mm track gauge system are an open point.

7.6.6. Particular features on the Lithuanian network

The specific cases for 1 520/1 524 mm track gauge system are an open point.

7.6.7. Particular features on the Polish network

7.6.7.1. Structure gauge (4.2.4.1)

**P cases**

*All TSI categories of line — clauses (1) and (2)*

(1) The structure gauge for the 1 520 mm lines shall be set according to national rules notified for this purpose.

7.6.7.2. Nominal track gauge (4.2.5.1)

**P cases**

*All TSI categories of line — additional clause (3)*

(3) A nominal track gauge of 1 520 mm is permitted for lines used for servicing international traffic to/from 1 520/1 524 mm railway countries.

7.6.7.3. Design values for equivalent conicity (4.2.5.5.1)

**P cases**

*All TSI categories of line — clause (2)*

(2) For the nominal track gauge of 1 520 mm the following wheelsets shall be modelled passing over the designed track conditions (simulated by calculation according to EN 15302:2008):

(a) S 1002 as defined in EN 13715:2006 Annex C with SR = 1 503 mm,

(b) S 1002 as defined in EN 13715:2006 Annex C with SR = 1 509 mm,
7.6.7.4. **Requirements for controlling equivalent conicity in service (4.2.5.5.2)**

**P cases**

All TSI categories of line — Table 5

<table>
<thead>
<tr>
<th>Speed range (km/h)</th>
<th>Mean gauge (mm) over 100 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>( v \leq 120 )</td>
<td>assessment not required</td>
</tr>
<tr>
<td>( 120 &lt; v \leq 160 )</td>
<td>1 515</td>
</tr>
<tr>
<td>( 160 &lt; v \leq 200 )</td>
<td>1 515</td>
</tr>
</tbody>
</table>

7.6.7.5. **In-service geometry of switches and crossings (4.2.6.2)**

**P cases**

All TSI categories of line — clause (2)

(2) The technical characteristics of switches and crossings for the nominal track gauge of 1 520 mm shall comply with the following in-service values:

(a) Maximum value of free wheel passage in switches: 1 460 mm.

(b) Minimum value of fixed nose protection for common crossings: 1 476 mm.

(c) Maximum value of free wheel passage at crossing nose: 1 436 mm.

(d) Maximum value of free wheel passage at check rail/wing rail entry: 1 460 mm.

Additional requirements in (a) and (b) remain unchanged.

7.6.7.6. **Maximum unguided length of fixed obtuse crossings (4.2.6.3)**

**P cases**

All TSI categories of line — clause (1)

(1) For the 1 520 mm track gauge system, the maximum design value of the unguided length shall be equivalent to 1 in 9 (\( \alpha \approx 0.11, \alpha = 6 \degree 20' \)) obtuse crossing with a minimum 44 mm raised check rail and associated with a wheel diameter greater than 330 mm on straight through routes.

7.6.8. **Particular features on the Portuguese network**

7.6.8.1. **Structure gauge (4.2.4.1)**

**P cases**

All TSI categories of line — clauses (1) and (2)

The structure gauge shall be set on the basis of the reference contours \( CP_b, CP_b^+ \) or \( CP_c \).

Calculations of the structure gauge shall be done using the kinematic method in accordance with the requirements of EN 15273-3:2009 Annex D Section D.4.3.

For the three rail track system, the structure gauge shall be set on the basis of the \( CP_b^+ \) reference contour, centred on the track gauge 1 668 mm.
7.6.8.2. Nominal track gauge (4.2.5.1)

P cases

All TSI categories of line — clause (1)

(1) The nominal track gauge shall be 1 668 mm, 1 435 mm or both if the line is equipped with the three rail track system.

7.6.8.3. Design values for equivalent conicity (4.2.5.5.1)

P cases

All TSI categories of line — clause (2)

(2) For the nominal track gauge of 1 668 mm the following wheelsets shall be modelled passing over the designed track conditions (simulated by calculation according to EN 15302:2008):

(a) S 1002 as defined in EN 13715:2006 Annex C with SR = 1 653 mm,

(b) S 1002 as defined in EN 13715:2006 Annex C with SR = 1 659 mm,

(c) GV 1/40 as defined in EN 13715:2006 Annex B with SR = 1 653 mm,

(d) GV 1/40 as defined in EN 13715:2006 Annex B with SR = 1 659 mm,

(e) EPS as defined in EN 13715:2006 Annex D with SR = 1 653 mm.

7.6.8.4. Requirements for controlling equivalent conicity in service (4.2.5.5.2)

P cases

All TSI categories of line — Table 5

Table 17

<table>
<thead>
<tr>
<th>Speed range (km/h)</th>
<th>Mean gauge (mm) over 100 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>( v \leq 60 )</td>
<td>assessment not required</td>
</tr>
<tr>
<td>( 60 &lt; v \leq 160 )</td>
<td>1 663</td>
</tr>
<tr>
<td>( 160 &lt; v \leq 200 )</td>
<td>1 663</td>
</tr>
</tbody>
</table>

7.6.8.5. In-service geometry of switches and crossings (4.2.6.2)

P cases

All TSI categories of line — clause (2)

The technical characteristics of switches and crossings for the nominal track gauge of 1 668 mm shall comply with the following in-service values:

(a) Maximum value of free wheel passage in switches: 1 613 mm.

(b) Minimum value of fixed nose protection for common crossings: 1 624 mm.

(c) Maximum value of free wheel passage at crossing nose: 1 589 mm.

(d) Maximum value of free wheel passage at check rail/wing rail entry: 1 613 mm.

Additional requirements in (a) and (b) remain unchanged.
7.6.9. Particular features on the Romanian network

7.6.9.1. In-service geometry of switches and crossings (4.2.6.2)

P cases

All TSI categories of line — clause (2)(f)

(2)(f) The technical characteristics of switches and crossings shall comply with an in-service value for minimum flangeway depth of 38 mm.

7.6.10. Particular features on the Spanish network

7.6.10.1. Structure gauge (4.2.4.1)

P cases

TSI categories of line V-P, V-F, V-M, VII-P, VII-F and VII-M — clauses (1) and (2)

(1) The structure gauge shall be set on the basis of the gauge GHE16 according to national rules notified for this purpose.

All TSI categories of line — additional clause (4)

(4) Structure gauge for 1 435 mm track gauge and structure gauge for 1 668 mm track gauge for each section of three rail track shall be published in the Register of Infrastructure.

7.6.10.2. Distance between track centres (4.2.4.2)

P cases

TSI categories of line IV-P, IV-F, IV-M, VI-P, VI-F and VI-M — clauses (1) and (2)

(1) The distance between track centres such for 1 668 mm as for 1 435 mm track gauge will be according to the maximum speed of the line.

Table 18
Distance between track centres on the Spanish network

<table>
<thead>
<tr>
<th>Speed (km/h)</th>
<th>Distance between track centres (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v ≤ 140</td>
<td>3 808</td>
</tr>
<tr>
<td>140 &lt; v ≤ 160</td>
<td>3 920</td>
</tr>
<tr>
<td>160 &lt; v ≤ 200</td>
<td>4 000</td>
</tr>
</tbody>
</table>

In justified cases the distance between track centres can be decreased to the next lower value of the table, and in lines with speeds less than 100 km/h it might be decreased, in extreme cases, to 3 674 mm.

TSI categories of line V-P, V-F, V-M, VII-P, VII-F and VII-M — clauses (1) and (2)

(1) The minimum distance between track centres such for 1 668 mm as for 1 435 mm track gauge shall be 3 808 mm.

On lines with speeds less than 100 km/h it might be decreased to 3 674 mm.

If the selected distance between track centres is less than 3 808 mm, then the safe passing clearance between trains shall be demonstrated.

7.6.10.3. Maximum gradients (4.2.4.3)

P cases

TSI categories of line IV-F, IV-M, VI-F and VI-M — clauses (3) and (4)

(3) Maximum gradients as steep as 20 mm/m are permitted for main tracks at the design phase.
7.6.10.4. **Nominal track gauge** (4.2.5.1)

**P cases**

*All TSI categories of line — clause (1) and additional clause (3)*

1. The nominal track gauge shall be either 1 668 mm or 1 435 mm.
2. The nominal track gauge of three rail tracks shall be 1 435 mm and 1 668 mm.

7.6.10.5. **Design values for equivalent conicity** (4.2.5.5.1)

**P cases**

*All TSI categories of line — clause (2)*

2. For the nominal track gauge of 1 668 mm the following wheelsets shall be modelled passing over the designed track conditions (simulated by calculation according to EN 15302:2008):
   - (a) S 1002 as defined in EN 13715:2006 Annex C with SR = 1 653 mm,
   - (b) S 1002 as defined in EN 13715:2006 Annex C with SR = 1 659 mm,
   - (c) GV 1/40 as defined in EN 13715:2006 Annex B with SR = 1 653 mm,
   - (d) GV 1/40 as defined in EN 13715:2006 Annex B with SR = 1 659 mm,
   - (e) EPS as defined in EN 13715:2006 with Annex D SR = 1 653 mm.

7.6.10.6. **Requirements for controlling equivalent conicity in service** (4.2.5.5.2)

**P cases**

*All TSI categories of line — Table 5*

| Minimum mean gauge in service on straight track and in curves of radius R > 10 000 m |
|---------------------------------|--------------------------------|
| Speed range (km/h)             | Mean gauge (mm) over 100 m   |
| v ≤ 60                         | assessment not required      |
| 60 < v ≤ 160                   | 1 663                        |
| 160 < v ≤ 200                  | 1 663                        |

7.6.10.7. **In-service geometry of switches and crossings** (4.2.6.2)

**P cases**

*All TSI categories of line — clause (2)*

The technical characteristics of switches and crossings for the nominal track gauge of 1 668 mm shall comply with the following in-service values:

- (a) Maximum value of free wheel passage in switches: 1 618 mm.
- (b) Minimum value of fixed nose protection for common crossings: 1 626 mm.
- (c) Maximum value of free wheel passage at crossing nose: 1 590 mm.
- (d) Maximum value of free wheel passage at check rail/wing rail entry: 1 620 mm.

Additional requirements in (a) and (b) remain unchanged.

7.6.11. **Particular features on the Swedish network**

On infrastructure with direct connection to the Finnish network and for infrastructure in harbours, the particular features of the Finnish network as specified in Section 7.6.2 of this TSI may be applied.

7.6.12. **Particular features on the UK network for Great Britain**

7.6.12.1. **Performance parameters** (4.2.2)

**P cases**

*All TSI categories of line — clause (7)*

7. The published information relating to axle load shall use the route availability (RA) number (derived in accordance with the national technical rule notified for this purpose) in combination with the permitted speed.
If the load carrying capability of a section of track exceeds the range of route availability (RA) numbers, then additional information defining the load carrying capability may be provided.

7.6.12.2. Structure gauge (4.2.4.1)

P cases

TSI categories of line V-P, V-F, V-M, VII-P, VII-F and VII-M — clauses (1) and (2)

(1) For the upgrading or renewal of conventional lines with respect to structure gauge, the structure gauge to be achieved will be specific to the project concerned.

The application of the gauges shall be in accordance with the national technical rule notified for this purpose.

7.6.12.3. Distance between track centres (4.2.4.2)

P cases

TSI categories of line V-P, V-F, V-M, VII-P, VII-F and VII-M — clauses (1) and (2)

(1) The nominal distance between track centres shall be 3 400 mm on straight track and curved track with a radius of 400 m or greater.

Where topographical constraints prevent a nominal distance of 3 400 mm between track centres being achieved, it is permissible to reduce the distance between track centres provided special measures are put in place to ensure a safe passing clearance between trains.

Reduction in the distance between track centres shall be in accordance with the national technical rule notified for this purpose.

7.6.12.4. Nominal track gauge (4.2.5.1)

P cases

TSI categories of line V-P, V-F, V-M, VII-P, VII-F and VII-M — additional clause (3)

(3) For the ‘CEN56 Vertical’ design of switches and crossings a nominal track gauge of 1 432 mm is permitted.

7.6.12.5. In-service geometry of switches and crossings (4.2.6.2)

P cases

TSI categories of line V-P, V-F, V-M, VII-P, VII-F and VII-M — additional clause (4)

(4) For the ‘CEN56 Vertical’ design of switches and crossings, a minimum value of fixed nose protection for common crossings of 1 388 mm is permitted (measured 14 mm below the running surface, and on the theoretical reference line, at an appropriate distance back from the actual (RP) of the nose as indicated in figure 2).

7.6.13. Particular features on the UK network for Northern Ireland

On the UK network for Northern Ireland the particular features of the Irish network as specified in Section 7.6.4 of this TSI shall be applied.
ANNEX A

ASSESSMENT OF INTEROPERABILITY CONSTITUENTS

The characteristics of the interoperability constituents to be assessed by the notified body or the manufacturer in accordance with the selected module, in the different phases of design, development and production, are marked by 'X' in Table 20. Where no assessment is required, this is marked by 'n.a.' in the table.

There are no particular assessment procedures required for interoperability constituents of the infrastructure subsystem.

Table 20
Assessment of interoperability constituents for the EC declaration of conformity

<table>
<thead>
<tr>
<th>Characteristics to be assessed</th>
<th>Design review</th>
<th>Review of manufacturing process</th>
<th>Type test</th>
<th>Product quality (series)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1 The rail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.1.1 Railhead profile</td>
<td>X</td>
<td>X</td>
<td>n.a.</td>
<td>X</td>
</tr>
<tr>
<td>5.3.1.2 Moment of inertia of the rail cross section</td>
<td>X</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>5.3.1.3 Rail hardness</td>
<td>X</td>
<td>X</td>
<td>n.a.</td>
<td>X</td>
</tr>
<tr>
<td>5.3.2 The rail fastening systems</td>
<td>n.a.</td>
<td>n.a.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.3.3 Track sleepers</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
ANNEX B

ASSESSMENT OF THE INFRASTRUCTURE SUBSYSTEM

The characteristics of the subsystem to be assessed in the different phases of design, construction and operation are marked by 'X' in Table 21.

Where no assessment by a notified body is required, this is marked by 'n.a.' in the table. This does not prevent the need for other assessments to be performed in the framework of other phases.

Definition of assessment phases:

(1) 'Design review': it includes checking of correctness of values/parameters against applicable TSI requirements.

(2) ‘Assembly before putting into service’: checking on site that the actual product complies with the relevant design parameters just before putting it into operation.

Column 3 gives references to Section 6.2.4 ‘Particular assessment procedures for subsystem’.

Table 21

<table>
<thead>
<tr>
<th>Characteristics to be assessed</th>
<th>New line or upgrading/renewal project</th>
<th>Particular assessment procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design review</td>
<td>Assembly before putting into service</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Structure gauge (4.2.4.1)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Distance between track centres (4.2.4.2)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maximum gradients (4.2.4.3)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Minimum radius of horizontal curve (4.2.4.4)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Minimum radius of vertical curve (4.2.4.5)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nominal track gauge (4.2.5.1)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Cant (4.2.5.2)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rate of change of cant (4.2.5.3)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cant deficiency (4.2.5.4)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Equivalent conicity (4.2.5.5.1) — design</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Equivalent conicity (4.2.5.5.2) — in-service</td>
<td>Open point</td>
<td>Open point</td>
</tr>
<tr>
<td>Railhead profile for plain line (4.2.5.6)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Rail inclination (4.2.5.7)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Track stiffness (4.2.5.8)</td>
<td>Open point</td>
<td>Open point</td>
</tr>
<tr>
<td>Means of locking (4.2.6.1)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>In-service geometry of switches and crossings (4.2.6.2)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics to be assessed</th>
<th>New line or upgrading/renewal project</th>
<th>Particular assessment procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design review</td>
<td>Assembly before putting into service</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Maximum unguided length of fixed obtuse crossings (4.2.6.3)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Track resistance to vertical loads (4.2.7.1)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Longitudinal track resistance (4.2.7.2)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Lateral track resistance (4.2.7.3)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Resistance of new bridges to traffic loads (4.2.8.1)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Equivalent vertical loading for new earthworks and earth pressure effects (4.2.8.2)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Resistance of new structures over or adjacent to tracks (4.2.8.3),</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Resistance of existing bridges and earthworks to traffic loads (4.2.8.4)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Determination of immediate action, intervention and alert limits (4.2.9.1)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>The immediate action limit for track twist (4.2.9.2)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>The immediate action limit for variation of track gauge (4.2.9.3)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>The immediate action limit for cant (4.2.9.4)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Usable length of platforms (4.2.10.1)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Width and edge of platforms (4.2.10.2)</td>
<td>See PRM</td>
<td>See PRM</td>
</tr>
<tr>
<td>End of platforms (4.2.10.3)</td>
<td>See PRM</td>
<td>See PRM</td>
</tr>
<tr>
<td>Height of platforms (4.2.10.4)</td>
<td>See PRM</td>
<td>See PRM</td>
</tr>
<tr>
<td>Offset of platforms (4.2.10.5)</td>
<td>See PRM</td>
<td>See PRM</td>
</tr>
<tr>
<td>Maximum pressure variation in tunnels (4.2.11.1)</td>
<td>X</td>
<td>n.a.</td>
</tr>
<tr>
<td>Noise and vibration limits and mitigation measures (4.2.11.2)</td>
<td>Open point</td>
<td>Open point</td>
</tr>
<tr>
<td>Protection against electric shock (4.2.11.3)</td>
<td>See ENE</td>
<td>See ENE</td>
</tr>
<tr>
<td>Safety in railway tunnels (4.2.11.4)</td>
<td>See SRT</td>
<td>See SRT</td>
</tr>
<tr>
<td>Effect of crosswinds (4.2.11.5)</td>
<td>Open point</td>
<td>Open point</td>
</tr>
<tr>
<td>Distance markers (4.2.12.1)</td>
<td>n.a.</td>
<td>X</td>
</tr>
<tr>
<td>Toilet discharge (4.2.13.2)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Characteristics to be assessed</td>
<td>New line or upgrading/renewal project</td>
<td>Particular assessment procedures</td>
</tr>
<tr>
<td>-------------------------------------------------------------------</td>
<td>--------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>Design review</td>
<td>Assembly before putting into service</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Train external cleaning facilities (4.2.13.3)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Water restocking (4.2.13.4)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Refuelling (4.2.13.5)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Electric shore supply (4.2.13.6)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
ANNEX C

CAPABILITY REQUIREMENTS FOR STRUCTURES ACCORDING TO TSI CATEGORY OF LINE IN GREAT BRITAIN

The capability requirements for structures are defined in Table 22 by a combined parameter comprising of the route availability number and a corresponding maximum speed. The route availability number and maximum associated speed shall be considered as a single combined parameter.

The route availability number is a function of maximum axle load and geometrical aspects relating to the spacing of axles. route availability numbers are defined in the national technical rules notified for this purpose.

Table 22
Route availability number — maximum associated speed (miles per hour)

<table>
<thead>
<tr>
<th>CR TSI INF TSI category of line</th>
<th>Passenger carriages (including coaches, vans and car carriers) other than light freight wagons</th>
<th>Freight wagons other vehicles</th>
<th>Locomotives and power heads (1) (2)</th>
<th>Electric or diesel multiple units, power units and railcars (1) (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-P</td>
<td>RA2 (1) – 125</td>
<td></td>
<td>RA7 (2) – 125</td>
<td>RA3 (2) – 125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RA8 (1) – 110</td>
<td>RA5 (3) – 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RA8 (10) – 100</td>
<td></td>
</tr>
<tr>
<td>IV-F</td>
<td>(1)</td>
<td>RA10 – 60</td>
<td>RA8 (1) – 90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RA8 – 75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RA2 – 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-M</td>
<td>see IV-P</td>
<td>see IV-F</td>
<td>see IV-P</td>
<td>see IV-P</td>
</tr>
<tr>
<td>V-P</td>
<td>RA2 (1) – 100</td>
<td></td>
<td>RA8 (1) – 100</td>
<td>RA3 (1) – 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RA8 (10) – 90</td>
<td></td>
</tr>
<tr>
<td>V-F</td>
<td>(1)</td>
<td>RA8 – 60</td>
<td>RA8 (1) – 60</td>
<td></td>
</tr>
<tr>
<td>V-M</td>
<td>see V-P</td>
<td></td>
<td>see V-P</td>
<td>see V-P</td>
</tr>
<tr>
<td>VI-P</td>
<td>RA2 (1) – 90</td>
<td></td>
<td>RA8 (1) – 90</td>
<td>RA8 (10) – 90</td>
</tr>
<tr>
<td>VI-F</td>
<td>(1)</td>
<td>RA10 – 60</td>
<td>RA8 (1) – 60</td>
<td></td>
</tr>
<tr>
<td>VI-M</td>
<td>see VI-P</td>
<td></td>
<td>see VI-P</td>
<td>see VI-P</td>
</tr>
<tr>
<td>VII-P</td>
<td>RA1 (1) – 75</td>
<td></td>
<td>RA7 (11) (11) – 75</td>
<td>RA3 (1) – 75</td>
</tr>
<tr>
<td>VII-F</td>
<td>(1)</td>
<td>RA7 – 60</td>
<td>RA7 (1) – 60</td>
<td></td>
</tr>
</tbody>
</table>

Passenger carriages (including coaches, vans, car carriers) (1) and light freight wagons (2) (7) and electric or diesel multiple units, power units and railcars (2) (7)

<table>
<thead>
<tr>
<th>CR TSI INF TSI</th>
<th>Category of line</th>
<th>Passenger carriages (including coaches, vans, car carriers) (1) and light freight wagons (2)</th>
<th>Freight wagons other vehicles</th>
<th>Locomotives and power heads (1) (2) (7)</th>
<th>Electric or diesel multiple units, power units and railcars (2) (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII-M</td>
<td>RA2 (1) – 75</td>
<td>RA7 – 75</td>
<td>RA7 (2) (9) – 75</td>
<td>see VII-P</td>
<td></td>
</tr>
</tbody>
</table>

Notes

(1) Passenger carriages (including coaches, vans, car carriers), other vehicles, locomotives, power heads, diesel and electric multiple units, power units and railcars are defined in the RST TSI. Light freight wagons are defined as vans except that they are permitted to be conveyed in formations which are not intended to convey passengers.

(2) The requirements for structures are compatible with Passenger coaches, vans, car carriers, light freight wagons and vehicles in diesel and electric multiple units and power units with a length of 18 m to 27.5 m for conventional and articulated vehicles and with a length of 9 m to 14 m for regular single axles.

(3) Not used. (Note 3 to Table 24 in Annex E is not applicable for Great Britain).

(4) The requirements for structures are compatible with up to two adjacent coupled locomotives and/or power heads. The requirements for structures are compatible with a maximum speed of 75 miles per hour for three or more adjacent coupled locomotives and/or power heads (or a train of locomotives and/or power heads) subject to the locomotives and/or power heads satisfying the corresponding limits for freight wagons.

(5) The requirements for structures are compatible with an average mass per unit length over the length of each coach/vehicle of 2.75 t/m.

(6) The requirements for structures are compatible with an average mass per unit length over the length of each coach/vehicle of 3.0 t/m.

(7) The requirements for structures are compatible with an average mass per unit length over the length of each coach/vehicle of 3.25 t/m.

(8) No formal TSI specification defined.

(9) For locomotives and power heads with 4 axles.

(10) For locomotives and power heads with 4 or 6 axles.

(11) For TSI category of line VII-P the member state may indicate whether the requirements for locomotives and power heads apply.
ANNEX D

ITEMS TO BE INCLUDED IN THE REGISTER OF INFRASTRUCTURE

As stated in Section 4.8 of this TSI, this Annex indicates which information concerning the infrastructure subsystem shall be included in the Register of Infrastructure.

Table 23
Infrastructure subsystem items for the Register of Infrastructure

<table>
<thead>
<tr>
<th>Infrastructure subsystem item</th>
<th>Section of this TSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route, boundaries and section of line concerned (description)</td>
<td></td>
</tr>
<tr>
<td>Section of line</td>
<td></td>
</tr>
<tr>
<td>TSI category of line</td>
<td>4.2.1</td>
</tr>
<tr>
<td>Gauge</td>
<td>4.2.2</td>
</tr>
<tr>
<td>EN line category (locomotive classes if relevant) in combination with permitted speed</td>
<td>4.2.2</td>
</tr>
<tr>
<td>Line speed</td>
<td>4.2.2</td>
</tr>
<tr>
<td>Train length</td>
<td>4.2.2</td>
</tr>
<tr>
<td>Conditions for running trains with specific systems to enhance performance level</td>
<td>4.2.3.2</td>
</tr>
<tr>
<td>Location and type of nominal track gauge transition sections</td>
<td>4.2.3.2</td>
</tr>
<tr>
<td>Minimum distance between track centres</td>
<td>4.2.4.2</td>
</tr>
<tr>
<td>Maximum gradients</td>
<td>4.2.4.3</td>
</tr>
<tr>
<td>Minimum radius of horizontal curve</td>
<td>4.2.4.4</td>
</tr>
<tr>
<td>Nominal track gauge</td>
<td>4.2.5.1</td>
</tr>
<tr>
<td>Cant</td>
<td>4.2.5.2</td>
</tr>
<tr>
<td>Rail inclination for plain line</td>
<td>4.2.5.7.1</td>
</tr>
<tr>
<td>Use of braking systems independent of wheel-rail adhesion conditions (longitudinal track resistance)</td>
<td>4.2.7.2</td>
</tr>
<tr>
<td>Usable length of platforms</td>
<td>4.2.10.1</td>
</tr>
<tr>
<td>Distance markers</td>
<td>4.2.12.1</td>
</tr>
<tr>
<td>Fixed installations for servicing trains (location and type)</td>
<td>4.2.13</td>
</tr>
</tbody>
</table>
The capability requirements for structures are defined in Table 24 by a combined quantity comprising of the EN line category (or if relevant locomotive class) and a corresponding maximum speed. The EN line category (and if relevant locomotive class) and maximum associated speed shall be considered as a single combined quantity.

Both EN line category and locomotive class are a function of axle load and geometrical aspects relating to the spacing of axles. EN line categories are set out in EN 15528:2008 Annex A and locomotive classes are set out in Annexes J and K of EN 15528:2008.

### Table 24

**EN line category — maximum associated speed (km/h)**

<table>
<thead>
<tr>
<th>TSI category of line</th>
<th>Passenger carriages (including coaches, vans and car carriers) (1) (2)</th>
<th>Freight wagons other vehicles</th>
<th>Locomotives and power heads (3) (4) (5)</th>
<th>Electric or diesel multiple units, power units and railcars (6) (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-P</td>
<td>B1 (8) – 200</td>
<td>D2 – 200 ( L_6 )</td>
<td>B1 (8) – 200 ( L_6 )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E5 – 100</td>
<td>D2 – 100 ( L_6 )</td>
<td>D4 – 100 ( L_6 )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4 – 120</td>
<td>( L_6 )</td>
<td>D4 – 120 ( L_6 )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2 – 140</td>
<td>( L_6 )</td>
<td>B2 – 140 ( L_6 )</td>
<td></td>
</tr>
<tr>
<td>IV-M</td>
<td>see IV-P</td>
<td>see IV-P</td>
<td>see IV-P</td>
<td>see IV-P</td>
</tr>
<tr>
<td>V-P</td>
<td>B1 (8) – 160</td>
<td>( L_4 )</td>
<td>C2 (8) – 160</td>
<td>D2 (8) – 100</td>
</tr>
<tr>
<td></td>
<td>E5 – 100</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4 – 120</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2 – 140</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td>V-M</td>
<td>see V-P</td>
<td>see V-P</td>
<td>see V-P</td>
<td>see V-P</td>
</tr>
<tr>
<td>VI-P</td>
<td>B1 (8) – 140</td>
<td>( L_4 )</td>
<td>C2 (8) – 140</td>
<td>D2 (8) – 100</td>
</tr>
<tr>
<td></td>
<td>E4 – 100</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4 – 120</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E4 – 100</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td>VI-F</td>
<td>(7)</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td>VI-M</td>
<td>see VI-P</td>
<td>see VI-P</td>
<td>see VI-P</td>
<td>see VI-P</td>
</tr>
<tr>
<td>VII-P</td>
<td>A (8) – 120</td>
<td>( L_4 )</td>
<td>A (8) – 120</td>
<td>( L_4 )</td>
</tr>
<tr>
<td></td>
<td>C2 – 100</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td>VII-F</td>
<td>(7)</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td>( L_4 )</td>
<td></td>
</tr>
<tr>
<td>VII-M</td>
<td>B1 (8) – 120</td>
<td>( L_4 )</td>
<td>B1 (8) – 120</td>
<td>( L_4 )</td>
</tr>
</tbody>
</table>

Notes:

(1) Passenger carriages (including coaches, vans, car carriers), other vehicles, locomotives, power heads, diesel and electric multiple units, power units and railcars are defined in the RST TSI. Light freight wagons are defined as vans except that they are permitted to be conveyed in formations which are not intended to convey passengers.

(2) The requirements for structures are compatible with passenger coaches, vans, car carriers, light freight wagons and vehicles in diesel and electric multiple units and power units with a length of 18 m to 27.5 m for conventional and articulated vehicles and with a length of 9 m to 14 m for regular single axles.

(3) When checking minimum infrastructure requirements the following EN line categories can be used as alternative minimum requirements to the stated locomotive classes: \( L_4 \) are covered by \( D_2 \) and \( L_6 \) are covered by \( D_4 \).

(4) The requirements for structures are compatible with up to two adjacent coupled locomotives and/or power heads. The requirements for structures are compatible with a maximum speed of 120 km/h for three or more adjacent coupled locomotives and/or power heads (or a train of locomotives and/or power heads) subject to the locomotives and/or power heads satisfying the corresponding limits for freight wagons.

(5) The requirements for structures are compatible with an average mass per unit length over the length of each coach/vehicle of 2.75 t/m.

(6) The requirements for structures are compatible with an average mass per unit length over the length of each coach/vehicle of 3.1 t/m.

(7) The requirements for structures are compatible with an average mass per unit length over the length of each coach/vehicle of 3.5 t/m.

(8) No formal TSI specification defined.
ANNEX F

LIST OF OPEN POINTS

Distance between track centres (see 4.2.4.2)
Requirements for controlling equivalent conicity in service (see 4.2.5.5.2)
Track stiffness (see 4.2.5.8)
Noise and vibration limits and mitigation measures (see 4.2.11.2)
Effect of crosswinds (see 4.2.11.5)
Specific cases for the Estonian network (see 7.6.1)
Specific cases for the Latvian network (see 7.6.5)
Specific cases for the Lithuanian network (see 7.6.6)
### ANNEX G

### GLOSSARY

**Table 25**

#### Terms

<table>
<thead>
<tr>
<th>Defined term</th>
<th>TSI section</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual point (RP)/Praktischer Herzpunkt/Pointe de cœur</td>
<td>4.2.6.2</td>
<td>Physical end of a crossing vee. See Figure 2, which shows the relationship between the actual point (RP) and the intersection point (IP).</td>
</tr>
<tr>
<td>Alert limit/Auslösewert/Limite d’alerte</td>
<td>4.2.9.1</td>
<td>Refers to the value which, if exceeded, requires that the track geometry condition is analysed and considered in the regularly planned maintenance operations.</td>
</tr>
<tr>
<td>Axle load/Achsfahrmasse/Charge à l’essieu</td>
<td>4.2.2, 4.2.7.1</td>
<td>Sum of the static vertical wheel forces exerted on the track through a wheelset or a pair of independent wheels divided by acceleration of gravity.</td>
</tr>
<tr>
<td>Cant/Überhöhung/Dévers de la voie</td>
<td>4.2.5.2, 4.2.5.3, 4.2.9.4</td>
<td>Difference in height, relative to the horizontal, of the two rails of one track at a particular location, measured at the centrelines of the heads of the rails.</td>
</tr>
<tr>
<td>Cant deficiency/Überhöhungsfehlbetrag/Insuffisance de dévers</td>
<td>4.2.5.4</td>
<td>Difference between the applied cant and a higher equilibrium cant.</td>
</tr>
<tr>
<td>Common crossing/Starres Herzstück/Cœur de croisement</td>
<td>4.2.6.2</td>
<td>Arrangement ensuring intersection of two opposite running edges of turnouts or diamond crossings and having one crossing vee and two wing rails.</td>
</tr>
<tr>
<td>Core TEN line/TEN Strecke des Kernnetzes/Ligne du RTE déclarée corridor</td>
<td>4.2.1, 7.2, 7.3</td>
<td>A TEN line identified by a Member State as an important part of an international corridor in Europe.</td>
</tr>
<tr>
<td>Crosswind/Seitenwind/Vents traversiers</td>
<td>4.2.11.5</td>
<td>Strong wind blowing laterally to a line which may adversely affect the safety of trains running.</td>
</tr>
<tr>
<td>Degraded operation/Gestörter Betrieb/Exploitation degradee</td>
<td>4.4.2</td>
<td>Operation resulting from an unplanned event that prevents the normal delivery of train services.</td>
</tr>
<tr>
<td>Design value/Planungswert/Valeur de conception</td>
<td>4.2.4.4, 4.2.5.2, 4.2.5.4.2, 4.2.5.5.1, 4.2.5.7.2, 4.2.9.4, 4.2.6.2, 4.2.6.3</td>
<td>Theoretical value without manufacturing, construction or maintenance tolerances.</td>
</tr>
<tr>
<td>Distance between track centres/Gleisabstand/Entraxe de voies</td>
<td>4.2.4.2</td>
<td>The distance between points of the centre lines of the two tracks under consideration, measured parallel to the running surface of the reference track namely the less canted track.</td>
</tr>
<tr>
<td>Diverging track/Zweiggleis/Voie déviée</td>
<td>4.2.5.4.2</td>
<td>In the context of switches and crossings, a route which diverges from the through route.</td>
</tr>
<tr>
<td>Defined term</td>
<td>TSI section</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>----------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Dynamic lateral force/</td>
<td>4.2.7.3</td>
<td>The sum of dynamic forces exerted by a wheelset on the track in lateral direction.</td>
</tr>
<tr>
<td>Dynamische Querkraft/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effort dynamique transversal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthworks/</td>
<td>4.2.8.2, 4.2.8.4</td>
<td>Soil structures and soil-retaining structures that are subject to railway traffic loading.</td>
</tr>
<tr>
<td>Erdbauwerke/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouvrages en terre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN line category/</td>
<td>4.2.2, 4.2.8.4, 7.5,</td>
<td>The result of the classification process set out in EN 15528:2008 Annex A and referred to in that standard as 'line category'. It represents the ability of the infrastructure to withstand the vertical loads imposed by vehicles on the line or section of line for regular service.</td>
</tr>
<tr>
<td>EN Streckenklasse/</td>
<td>Annex E</td>
<td></td>
</tr>
<tr>
<td>EN Catégorie de ligne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent conicity/</td>
<td>4.2.5.5</td>
<td>The tangent of the cone angle of a wheelset with coned wheels whose lateral movement has the same kinematic wavelength as the given wheelset on straight track and large-radius curves.</td>
</tr>
<tr>
<td>Äquivalente Konizität/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conicité équivalente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excess height of check rail/</td>
<td>4.2.6.2 (g)</td>
<td>Height of the check rail above the adjacent running rail (see dimension 7 on Figure 5 below).</td>
</tr>
<tr>
<td>Radlenkerüberhöhung/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surélévation du contre rail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed nose protection/</td>
<td>4.2.6.2 (b)</td>
<td>Dimension between the crossing nose and check rail (see dimension No 2 on Figure 5 below).</td>
</tr>
<tr>
<td>Leitweite/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cote de protection de pointe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flangeway depth/</td>
<td>4.2.6.2 (f)</td>
<td>Dimension between the running surface and the bottom of flangeway (see dimension No 6 on Figure 5 below).</td>
</tr>
<tr>
<td>Rillentiefe/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profondeur d'ornière</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flangeway width/</td>
<td>4.2.6.2 (e)</td>
<td>Dimension between a running rail and an adjacent check or wing rail (see dimension No 5 on Figure 5 below).</td>
</tr>
<tr>
<td>Rillenweite/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largeur d’ornière</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free wheel passage at check rail/wing rail entry/</td>
<td>4.2.6.2 (d)</td>
<td>Dimension between the working face of the crossing check rail or wing rail and the gauge face of the running rail opposite across the gauge measured at entry to check rail or wing rail respectively.</td>
</tr>
<tr>
<td>Freier Raddurchlauf im Radlenker-Einlauf/Flügelschienen-Einlauf/</td>
<td></td>
<td>(see dimensions No 4 on Figure 5 below). The entry to the check rail or wing rail is the point at which the wheel is permitted to contact the check rail or wing rail.</td>
</tr>
<tr>
<td>Côte d'équilibrage du contre-rail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free wheel passage at crossing nose/</td>
<td>4.2.6.2 (c)</td>
<td>Dimension between the working face of the crossing wing rail and check rail opposite across the gauge (see dimension No 3 on Figure 5 below).</td>
</tr>
<tr>
<td>Freier Raddurchlauf im Bereich der Herzspitze/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cote de libre passage dans le croisement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free wheel passage in switches/</td>
<td>4.2.6.2 (a)</td>
<td>Dimension from the gauge face of one switch rail to the back edge of the opposite switch rail (see dimension No 1 on Figure 5 below).</td>
</tr>
<tr>
<td>Freier Raddurchlauf im Bereich der Zungenvorrichtung/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Côte de libre passage de l'aiguillage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gauge/</td>
<td>4.2.2</td>
<td>Set of rules including a reference contour and its associated calculation rules allowing definition of the outer dimensions of the vehicle and the space to be cleared by the infrastructure.</td>
</tr>
<tr>
<td>Begrenzungslinie/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabarit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defined term</td>
<td>TSI section</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>HBW/</td>
<td>5.3.1.3</td>
<td>The non SI unit for steel hardness defined in EN ISO 6506-1:2005 Metallic materials — Brinell hardness test. Test method.</td>
</tr>
<tr>
<td>Immediate action limit/ Soforteingriffsschwelle/ Limite d'intervention immédiate</td>
<td>4.2.9.1, 4.2.9.2, 4.2.9.3, 4.2.9.4</td>
<td>The value which, if exceeded, requires taking measures to reduce the risk of derailment to an acceptable level.</td>
</tr>
<tr>
<td>Infrastructure manager/ Betreiber der Infrastruktur/ Gestionnaire de l'Infrastructure</td>
<td>4.2.5.5, 4.2.6.2, 4.2.9, 4.4.3, 4.5.2, 4.7.4, 4.7.5</td>
<td>As defined in Article 2(h) of Directive 2001/14/EC of the European Parliament and of the Council of 26 February 2001 on the allocation of railway infrastructure capacity and the levying of charges for the use of railway infrastructure and safety certification (O J L 75, 15.3.2001, p. 29).</td>
</tr>
<tr>
<td>In-service value/ Wert im Betriebszustand/ Valeur en exploitation</td>
<td>4.2.5.5.2, 4.2.6.2, 4.2.9.4</td>
<td>Value measured at any time after the infrastructure has been placed into service.</td>
</tr>
<tr>
<td>Intersection point (IP)/ Theoretischer Herzpunkt/ Point d'intersection théorique</td>
<td>4.2.6.2</td>
<td>Theoretical intersection point of the running edges at the centre of the crossing (see Figure 2).</td>
</tr>
<tr>
<td>Intervention limit/ Eingriffsschwelle/ Valeur d'intervention</td>
<td>4.2.9.1</td>
<td>The value, which, if exceeded, requires corrective maintenance in order that the immediate action limit shall not be reached before the next inspection;</td>
</tr>
<tr>
<td>Isolated defect/ Einzelfehler/ Défaut isolé</td>
<td>4.2.9.1, 4.2.9.2</td>
<td>A discrete track geometry fault.</td>
</tr>
<tr>
<td>Line speed/ Streckengeschwindigkeit/ Vitesse de la ligne</td>
<td>4.2.2</td>
<td>Maximum speed for which a line has been designed.</td>
</tr>
<tr>
<td>Maintenance file/ Instandhaltungsdossier/ Dossier de maintenance</td>
<td>4.5.1</td>
<td>Elements of the technical file relating to conditions and limits of use and instructions for maintenance.</td>
</tr>
<tr>
<td>Maintenance plan/ Instandhaltungsplan/ Plan de maintenance</td>
<td>4.5.2</td>
<td>A series of documents setting out the infrastructure maintenance procedures adopted by an infrastructure manager.</td>
</tr>
<tr>
<td>Main tracks/ Hauptgleise/ Voies principales</td>
<td>4.2.4.3</td>
<td>Tracks used for running trains in service. The term excludes sidings, depots, stabling tracks and connecting lines.</td>
</tr>
<tr>
<td>Multi-rail track/ Mehrschiengleis/ Voie à multi écartement</td>
<td>4.2.3.2, 4.2.6.3</td>
<td>Track with more than two rails, where at least two pairs of respective rails are designed to be operated as separate single tracks, with or without different track gauges.</td>
</tr>
<tr>
<td>Nominal track gauge/ Nennspurweite/ Ecartement nominal de la voie</td>
<td>4.2.5.1</td>
<td>A single value that identifies the track gauge.</td>
</tr>
<tr>
<td>Defined term</td>
<td>TSI section</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Normal service/</td>
<td>4.2.3.2</td>
<td>The railway operating to a planned timetable service.</td>
</tr>
<tr>
<td>Regelbetrieb/</td>
<td>4.2.10.1</td>
<td></td>
</tr>
<tr>
<td>Service régulier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other TEN line/</td>
<td>4.2.1, 7.2</td>
<td>A TEN line not being a core TEN line.</td>
</tr>
<tr>
<td>Weitere TEN Strecke/</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>Autre ligne du RTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive provision/</td>
<td>4.2.10.1</td>
<td>Provision for the future construction of a physical extension to a structure (for example: increased platform length).</td>
</tr>
<tr>
<td>Vorsorge für künftige Erweiterungen/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Réservation pour extension future</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance parameter/</td>
<td>4.2.2</td>
<td>Parameter describing a TSI category of line used as the basis for the design of infrastructure subsystem elements and as the indication of the performance level of a line.</td>
</tr>
<tr>
<td>Leistungskennwert/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramètre de performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain line/</td>
<td>4.2.5.5</td>
<td>Section of track without switches and crossings.</td>
</tr>
<tr>
<td>Freie Strecke/</td>
<td>4.2.5.6</td>
<td></td>
</tr>
<tr>
<td>Voie courante</td>
<td>4.2.5.7</td>
<td></td>
</tr>
<tr>
<td>Point retraction/</td>
<td>4.2.6.2 (b)</td>
<td>The reference line in a fixed common crossing can deviate from the theoretical reference line. From a certain distance to the crossing point, the reference line of the vee can, depending on the design, be retracted from this theoretical line away from the wheel flange in order to avoid contact between both elements. This situation is described in Figure 2.</td>
</tr>
<tr>
<td>Spitzenbeihobelung/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dénivelation de la pointe de cœur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail inclination/</td>
<td>4.2.5.5</td>
<td>An angle defining the inclination of the head of a rail when installed in the track relative to the plane of the rails (running surface), equal to the angle between the axis of symmetry of the rail (or of an equivalent symmetrical rail having the same railhead profile) and the perpendicular to the plane of the rails.</td>
</tr>
<tr>
<td>Schienenneigung/</td>
<td>4.2.5.7</td>
<td></td>
</tr>
<tr>
<td>Inclinaison du rail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail pad/</td>
<td>5.3.2</td>
<td>A resilient layer fitted between a rail and the supporting sleeper or baseplate.</td>
</tr>
<tr>
<td>Schienenzwischenlage/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semelle sous rail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse curve/</td>
<td>4.2.4.4</td>
<td>Two abutting curves of opposite flexure or hand.</td>
</tr>
<tr>
<td>Gegenbogen/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courbes et contre-courbes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure gauge/</td>
<td>4.2.4.1</td>
<td>Defines the space in relation to the reference track that shall be cleared of all objects or structures and of the traffic on the adjacent tracks, in order to allow safe operation on the reference track. It is defined on the basis of the reference contour by application of the associated rules.</td>
</tr>
<tr>
<td>Lichtraum/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabarit des obstacles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switches/</td>
<td>4.2.5.4.2</td>
<td>A unit of track comprising two fixed rails (stock rails) and two movable rails (switch rails) used to direct vehicles from one track to another track.</td>
</tr>
<tr>
<td>Zungenvorrichtung/</td>
<td>4.2.6.1</td>
<td></td>
</tr>
<tr>
<td>Aiguillage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switches and crossings/</td>
<td>4.2.5.4.1, 4.2.5.7.2, 4.2.6, 4.2.7.1, 4.2.7.2.1, 4.2.7.3, 5.2</td>
<td>Track constructed from sets of switches and individual crossings and the rails connecting them.</td>
</tr>
<tr>
<td>Weichen und Kreuzungen/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appareil de voie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defined term</td>
<td>TSI section</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>-------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Through route/ Stammgleis/ Voie directe</td>
<td>4.2.5.4.1</td>
<td>In the context of switches and crossings a route which perpetuate the general alignment of the track.</td>
</tr>
<tr>
<td></td>
<td>4.2.6.3</td>
<td></td>
</tr>
<tr>
<td>Track gauge/ Spurweite/ Ecartement de la voie</td>
<td>4.2.5.1</td>
<td>The smallest distance between lines perpendicular to the running surface intersecting each railhead profile in a range from 0 to 14 mm below the running surface.</td>
</tr>
<tr>
<td>Track stiffness/ Steifigkeit des Gleises/ Rigidite de la voie</td>
<td>4.2.5.8</td>
<td>The global measure expressing the resistance of the track against the rail displacement that takes place under wheel loading.</td>
</tr>
<tr>
<td>Track twist/ Gleisverwindung/ Gauche</td>
<td>4.2.9.1, 4.2.9.2</td>
<td>Track twist is defined as the algebraic difference between two cross levels taken at a defined distance apart, usually expressed as a gradient between the two points at which the cross level is measured.</td>
</tr>
<tr>
<td>Train length/ Zuglänge/ Longueur du train</td>
<td>4.2.2</td>
<td>The length of a train, which can run on a certain line in normal operation.</td>
</tr>
<tr>
<td>TSI category of line/ TSI Streckenkategorie/ TSI Catégorie de ligne</td>
<td>4.2, 7.2, 7.3.1, 7.5, 7.6</td>
<td>Classification of a line according to type of traffic and type of line to select the needed level of performance parameters.</td>
</tr>
<tr>
<td>Type of line/ Streckenart/ Type de ligne</td>
<td>4.2.1, 7.3.1</td>
<td>Definition of the importance of a line (core or other) and the way of achieving parameters required for interoperability (new or upgraded).</td>
</tr>
<tr>
<td>Type of traffic/ Verkehrsart/ Type de trafic</td>
<td>4.2.1</td>
<td>Indicates for a TSI category of line the dominant traffic for the target system and the respective basic parameters.</td>
</tr>
<tr>
<td>Unguided length of an obtuse crossing/ Führungslose Stelle/ Lacune dans la traversée</td>
<td>4.2.6.3</td>
<td>Portion of obtuse crossing where there is no guidance of the wheel described as 'unguided distance' in EN 13232-3:2003.</td>
</tr>
<tr>
<td>Usable length of a platform/ Bahnsteignutzlänge/ Longueur utile de quai</td>
<td>4.2.10.1</td>
<td>The maximum continuous length of that part of platform in front of which a train is intended to remain stationary in normal operating conditions for passengers to board and alight from the train, making appropriate allowance for stopping tolerances. Normal operating conditions means that railway is operating in a non-degraded mode (e.g. rail adhesion is normal, signals are working, everything is working as planned).</td>
</tr>
</tbody>
</table>
Figure 5

Geometry of switches and crossings

1 Free wheel passage in switches
2 Fixed nose protection
3 Free wheel passage at crossing nose
4 Free wheel passage at check rail/wing rail entry
5 Flangeway width
6 Flangeway depth
7 Excess height of check rail
### ANNEX H

#### LIST OF REFERENCED STANDARDS

Table 26

List of referenced standards

<table>
<thead>
<tr>
<th>Index No</th>
<th>Reference</th>
<th>Document name</th>
<th>Version (year)</th>
<th>BP(s) concerned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EN 13715</td>
<td>Railway applications — Wheelsets and boogies — Wheels — Wheels tread</td>
<td>2006</td>
<td>Design values for equivalent conicity (4.2.5.5.1)</td>
</tr>
<tr>
<td>2</td>
<td>EN 13803-2</td>
<td>Rail applications — Track — Track alignment design parameters — Track gauges 1 435 mm and wider — Part 2: Switches and crossings and comparable alignment design situations with abrupt changes of curvature (with Amendment A1:2009)</td>
<td>2006</td>
<td>Minimum radius of horizontal curve (4.2.4.4)</td>
</tr>
<tr>
<td>3</td>
<td>EN 13848-1</td>
<td>Rail applications — Track — Track geometry quality — Part 1: Characterisation of track geometry (with Amendment A1:2008)</td>
<td>2003</td>
<td>Determination of immediate action, intervention and alert limits (4.2.9.1), Assessment of minimum value of mean track gauge (6.2.4.5)</td>
</tr>
<tr>
<td>4</td>
<td>EN 15273-3</td>
<td>Railway applications — Gauges — Part 3: Structure gauges</td>
<td>2009</td>
<td>Performance parameters (4.2.2), Structure gauge (4.2.4.1), Assessment of distance between track centres (6.2.4.2),</td>
</tr>
<tr>
<td>5</td>
<td>EN 15302</td>
<td>Railway applications — Method for determining the equivalent conicity</td>
<td>2008</td>
<td>Design values for equivalent conicity (4.2.5.5.1)</td>
</tr>
<tr>
<td>6</td>
<td>EN 15528</td>
<td>Railway applications — Line categories for managing the interface between load limits of vehicles and infrastructure</td>
<td>2008</td>
<td>Resistance of existing bridges and earthworks to traffic loads (4.2.8.4 and Annex E),</td>
</tr>
<tr>
<td>Index No</td>
<td>Reference</td>
<td>Document name</td>
<td>Version (year)</td>
<td>BP(s) concerned</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>8</td>
<td>EN 1991-2</td>
<td>Eurocode 1 — Actions on structures — Part 2: Traffic load on bridges</td>
<td>2003</td>
<td>Structures resistance to traffic loads (4.2.8), Resistance of new bridges to traffic loads (4.2.8.1), Equivalent vertical loading for new earthworks and earth pressure effects (4.2.8.2), Resistance of new structures over or adjacent to tracks (4.2.8.3)</td>
</tr>
</tbody>
</table>