Required vehicle information for power system studies and simulations

The information is needed for traction power supply system simulations in order to develope the traction power supply system for future, investigate power systems problems and do energy demand and loss calculations.

No comment means information not found/received.
na not applicable
Vehicle:

Data required for all vehicles:

Item no	Trainsim parameter	Description	Comment		
1		Motor type (asynchronous motor or direct-current motor)			
2	DynMass	Dynamic mass [metric tons] of vehicle (locomotive + cars (coaches)) in service order. Dynamic mass is the mass used for the calculation of the acceleration and the retardation under consideration and impact of the rotary mass.			
3	Mass	Total mass in service order [metric tons], without load			
3 T		Mass [metric tons] of vehicle including normal load, only for motor train sets			
3 b		Mass [metric tons] of vehicle including maximum load, only for motor train sets			
4	AdhMass	Adhesion mass [metric tons] of vehicle, which is the total mass on driving axles.			
5	MaxSpeed	Maximum speed [km/h] of vehicle			
6	Slength	Front area	Length [m] of vehicle		Front area [m²]
:---					

15	FVtrainMax FMOT FELBRAKE	Maximum (incl. weight compensation, if used) and continuous curve for tractive and electric braking effort $[\mathrm{kN}]$ as function of speed $[\mathrm{km} / \mathrm{h}]$ at or above $\mathrm{U}_{\text {powlim }}$ (at least as a table)	
15a		Description of the functions of the control/brake lever. What is controlled? - Speed - Tractive effort - Acceleration - other	
16	AccRefV	Desired/max. permissable acceleration and retardation $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ as function of speed $[\mathrm{km} / \mathrm{h}]$ (at least as table)	
16a		Weight compensation? [yes/no] (Is the possible maximum tractive effort depending on the load (weight) of the vehicle?)	
17	EFF	Efficiency [\%] for $100 \%, 75 \%, 50 \%$ and 25% tractive effort from current collector to wheel as function of speed [$\mathrm{km} / \mathrm{h}]$ (at least as table). Auxiliary power not included NOTE: This efficiency is also used for electrical braking.	
17a		The losses in total shall describe the chain for pantograph to wheel for power supply studies with train simulation. Losses of the transformer, converter and motor as a function of current and/or tractive effort, defined as followed: Transformer losses - $\mathrm{P}_{\mathrm{T}}\left(\mathrm{I}_{\mathrm{P}}\right)=\mathrm{C}_{\mathrm{T} 1}+\mathrm{C}_{\mathrm{T} 2} \mathrm{I}_{\mathrm{P}}+\mathrm{C}_{\mathrm{T} 3} \mathrm{I}^{2}{ }^{2}$ Converter losses - $\mathrm{P}_{\mathrm{C} 1}\left(\mathrm{I}_{\mathrm{T}}\right)=\mathrm{C}_{\mathrm{C} 11}+\mathrm{C}_{\mathrm{C} 12} \mathrm{I}_{\mathrm{T}}+\mathrm{k}_{\mathrm{C} 13}(\mathrm{v}) \mathrm{C}_{\mathrm{C} 13} \mathrm{I}^{2}{ }^{2}$ - $\mathrm{P}_{\mathrm{C} 2}(\mathrm{~F})=\mathrm{C}_{\mathrm{C} 21}+\mathrm{C}_{\mathrm{C} 22} \mathrm{~F}+\mathrm{k}_{\mathrm{C} 23}(\mathrm{v}) \mathrm{C}_{\mathrm{C} 23} \mathrm{~F}^{2}$ Motor losses - $\quad \mathrm{P}_{\mathrm{M}}(\mathrm{F}, \mathrm{v})=\mathrm{C}_{\mathrm{M} 1}+\mathrm{C}_{\mathrm{M} 2} \mathrm{~F}+\mathrm{k}_{\mathrm{M} 3}(\mathrm{v}) \mathrm{C}_{\mathrm{M} 3} \mathrm{~F}^{2}$ Sum of other relevant losses (e.g. ventilation, pumps, gears and so on) in order to describe the chain from pantograph to wheel complete: - $\mathrm{P}_{\mathrm{R} 1}\left(\mathrm{I}_{\mathrm{T}}, \mathrm{v}\right)=\mathrm{C}_{\mathrm{R} 11}+\mathrm{C}_{\mathrm{R} 12} \mathrm{I}_{\mathrm{T}}+\mathrm{k}_{\mathrm{R} 13}(\mathrm{v}) \mathrm{C}_{\mathrm{R} 13} \mathrm{I}_{\mathrm{T}}{ }^{2}$ - $\quad \mathrm{P}_{\mathrm{R} 2}(\mathrm{~F}, \mathrm{v})=\mathrm{C}_{\mathrm{R} 21}+\mathrm{C}_{\mathrm{R} 22} \mathrm{~F}+\mathrm{k}_{\mathrm{R} 23}(\mathrm{v}) \mathrm{C}_{\mathrm{R} 23} \mathrm{~F}^{2}$ - $\mathrm{P}_{\mathrm{R} 3}(\mathrm{v})=\mathrm{C}_{\mathrm{R} 31}+\mathrm{C}_{\mathrm{R} 32} \mathrm{v}+\mathrm{C}_{\mathrm{R} 33} \mathrm{v}^{2}$ With I_{P} total current at current collector (incl. auxiliary) $\mathrm{I}_{\mathrm{T}} \quad$ traction current, part of current at current collector used for traction (excl. auxiliary) F tractive effort $\mathrm{k}_{\mathrm{C} 23}$ speed depending correction factor, defined as polygon curve, if necessary $\mathrm{k}_{\text {M3 }}$ speed depending correction factor, defined as polygon curve, if necessary For vehicles which can increase U and decreasing I correspondingly in the area of constant P the losses can be adjusted with help of $\mathrm{k}_{\mathrm{C} 13}, \mathrm{k}_{\mathrm{C} 23}, \mathrm{k}_{\mathrm{M} 3}, \mathrm{k}_{\mathrm{R} 13}$ and $\mathrm{k}_{\mathrm{R} 23}$. NOTE: The provided model of describing losses in the different parts of the traction chain is general. Therefore use only the coefficients and factors, which are relevant for the vehicle concerned.	$\begin{aligned} & \mathrm{C}_{\mathrm{T} 1}= \\ & \mathrm{C}_{\mathrm{T} 2}= \\ & \mathrm{C}_{\mathrm{T} 3}= \\ & \\ & \mathrm{C}_{\mathrm{C} 11}= \\ & \mathrm{C}_{\mathrm{C} 12}= \\ & \mathrm{C}_{\mathrm{C} 13}= \\ & \mathrm{k}_{\mathrm{C} 13}= \\ & \mathrm{C}_{\mathrm{C} 21}= \\ & \mathrm{C}_{\mathrm{C} 22}= \\ & \mathrm{C}_{\mathrm{C} 23}= \\ & \mathrm{k}_{\mathrm{C} 23}= \\ & \\ & \mathrm{C}_{\mathrm{M} 1}= \\ & \mathrm{C}_{\mathrm{M} 2}= \\ & \mathrm{C}_{\mathrm{M} 3}= \\ & \mathrm{k}_{\mathrm{M} 3}= \\ & \\ & \mathrm{C}_{\mathrm{R} 11}= \\ & \mathrm{C}_{\mathrm{R} 12}= \\ & \mathrm{C}_{\mathrm{R} 13}= \\ & \mathrm{k}_{\mathrm{R} 13}= \\ & \mathrm{C}_{\mathrm{R} 21}= \\ & \mathrm{C}_{\mathrm{R} 22}= \\ & \mathrm{C}_{\mathrm{R} 23}= \\ & \mathrm{k}_{\mathrm{R} 23}= \\ & \mathrm{C}_{\mathrm{R} 31}= \\ & \mathrm{C}_{\mathrm{R} 32}= \\ & \mathrm{C}_{\mathrm{R} 33}= \end{aligned}$
18	PUsupplyLIM PMOT PELBRAKE	Maximum traction power consumption and regeneration [MW] as function of contact line voltage [kV] at the current collector (at least as table). Power consumption for	

Last revised 2018-06-05, PD		passenger coaches if vehicle is locomotive, see no 12 and 13 Note: Normally used to describe power reduction, according to EN 50388:2012	
18 a	Imax Smax	Maximum current and/or apparent power at the pantograph used for the power limitation according EN 50388. Specify even edition of EN 50388.	
19	4.5 .2 .19	Topic not used	
20	4.5 .2 .22	Main circuit schematics	
	4.5 .2 .20	Topic not relevant	
21	4.5 .2 .23	Filter configuration and component values/data including main transformer	
22	4.5 .2 .24	Admittance frequency response including control system If applicable 22 a Software version(s) of control system Drivers manual and a detailed description of the vehicle. In order to be able to judge the figures given in this document and to be able to make own assumptions when designing models for simulation.	
23		Power angle [deg] alternative power factor for power consumption and regeneration as function of contact line voltage	
28	FIU FiMOT FiBRAKE 4.5 .2 .40	PauxB 4.5 .2 .41	Active power consumption [MW] for auxiliary power, train heating and air condition which is taken from the converter bridge (dc-link)

General comments:

Name, phone and email of contact
person

Date and signature:

(1) TRAFIKVERKET

Last revised 2018-06-05, PD

Appendix

Tables and diagrams

